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PIES + current meter & CPIES arrays
Paroscientific Digiquartz sensors

4 arrays, 7 settings

leveling / dedrifting method
Characterizing the observed drifts



Drift Characteristics of
Paroscientific pressure sensors

* Aim to show...
— (exponential+linear) curve is well suited to represent the drift

— Geostrophic leveling & drift detection is reliable to ~0.01 dbar

» new drift curves differ from previous method that used just P data,
although both use (exp + lin) fit

— Averaging records from two or more ‘same-site’ sensors
produces an average drift, but not zero drift

— Pre-stressing reduces |drift|



CPIES:
current and pressure recording

Inverted echo sounder

Measures bottom current.
(50 m off bottom)

Emits 12kHz sound pulses.
Measures round trip travel times of
acoustic pulses to sea surface and back.

Measures bottom pressure (and temperature).

(includes acoustic release + relocation radio+strobe light)



CPIES array yields...

A CPIES array yields daily maps of
upper and deep circulation.

Look-up tables interpret acoustic travel times as
geopotential height (0 referenced to 5000 dbar).

2-D arrays of CPIES estimate horizontal gradients of
geopotential to calculate geostrophic velocities.

Velocity profiles are referenced by measured near-
bottom currents.

Bottom pressures are leveled using near-bottom
currents to map the geostrophic streamfunction.
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« Digiquartz frequency increases with pressure-applied load:
— Accuracy 100 ppm;  drift ~ 10 ppm; stability & resolution ~ <1-2 ppm

* PIES measures frequency with 4MHz temperature-compensated crystal
— freq. spec: 10 ppb accuracy to serve as a stable reference



URI PIES & CPIES deployment sites

* 4 recent arrays with current meters; 7 settings



URI PIES & CPIES deployment sites

Kuroshio
Gulf of Extension
Mexico
Kuroshio,
East China
Sea
Drake
Passage

* 4 recent arrays with current meters; 7 settings
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Tidal response analysis (Munk and Cartwright, 1977)
determines the tidal constituents for each instrument.

Tides are then removed from the pressure records.



Kuroshio Extension deep streamfunction maps
LP filter (1-mo); July-Aug 2004
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These are used to level and dedrift the P(t) records as follows.



Leveling (and drift)

* The streamfunction from CMs and the
pressure from PIES measure the same
geostrophic pressure field.

— The two fields should only differ by a site-
dependent leveling constant.
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Digiquartz Pressure Drift (1)

« How well-suited is the (exponential + linear) curve-fit
to the ‘processes’ causing observed drifts?

— Test by comparing ‘same-site’ differences of raw records
against the sum of fitted drift curves

— Note ‘same-site’ pairs could be 0.1 to 0.4 km apart



(prs 1 + drift) - (prs 2 + drift) [dbar]

Consistency of method at ‘'same-site’ pairs in GoMex
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* (rows 1, 2) sites with two PIES eaéh, separately dedrifted

» (row 3) The difference between raw records (blue) agrees with
difference between drift curves (red); rms <0.0013 dbar (model 46K’s)



prs 2 + drift [dbar] prs 1 + drift [dbar]

(prs 1 + drift) - (prs 2 + drift) [dbar]

Consistency of (exp+lin) at ‘same-site’ pairs in Kuroshio
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« (rows 1, 2) Two sites with two PIES each, separately dedrifted

« (row 3) The difference between raw records (blue) agrees with difference
between drift curves (red); rms=0.004, 0.002 dbar (model 410K’s)



* The (exp + lin) curve suits the drift process well

* Next simply characterize the drift of each of many
records by its (exp + lin) curve...



prs [dbar]

144 drift curves from 92 sensors
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Digiquartz Pressure Drift (2)

6000 psi ~ 4000 dbar sensors, model 46K
10000 psi ~ 6800 dbar sensors, model 410K

Do drifts scale with FS range?
What sign and magnitude of drift?
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prs [dbar]

Model 46K (stretched) and 410K sensor drift
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Typical |drift| ~ 0.4 dbar

Upward and downward drifts would arise from
two different processes

Exponential and linear drifts would arise from
different processes

So there must be at least 3-4 substantial
contributions to drift

Yeow!



Digiquartz Pressure Drift (3)

« Since the largest part of the drift decays exponentially
with time, can pre-stressing the sensors decrease
subsequent drift?

— We usually pre-stress for many weeks or months
— 4000 psi for 6000 psi FS (~2800 dbar for ~4000 dbar FS)
— 6000 psi for 10000 psi FS (~4100 dbar for ~6800 dbar FS)

* How much might it help to pre-stress at nearly the
same pressure as the subsequent deployment?

* Does sensor improve with age?



prs [dbar]

How effective is pre-stressing? (410K’s)
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*Without pre-stressing, all six |drifts| ~ -.4 dbar in a year

*With pre-stressing many |drifts| <0.1 dbar (+/-) in a year,
but many others drifted up or down ~0.4 dbar in 1-2 yrs

*pre-stressing seems highly advisable, but
does not guarantee small drift



prs [dbar]

How effective is pre-stressing? (410K’s)

Non-stressed Paroscientific Model 410K Drift Curves
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*Without pre-stressing, all six |drifts| ~ -.4 dbar in a year

*With pre-stressing many |drifts| <0.1 dbar (+/-) in a year,
but many others drifted up or down ~0.4 dbar in 1-2 yrs

-pre-stressing seems highly advisable, but Next rzprtesr?nt drift
does not guarantee small drift as (end-start)....



Does it help to pre-stress at ~ deployment P?
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Does drift depend on prior deployment depth?

difference (Ppe, - Pprior)

* Answer is similarly murky...

« Slightly less drift with 'same’ new and old deployment
depths.



Does age of sensor reduce drift rate?
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Digiquartz Pressure Drift (4)

* Does a given sensor drift ‘predictably’ from one
deployment to the next?



Digiquartz Pressure Drift (4)

* Does a given sensor drift ‘predictably’ from one
deployment to the next?

« Answer... the drift is not necessarily replicated in
magnitude or direction! But we had many variables,
and have not yet sorted out all effects.

« A few sensors DID replicate drift.
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Digiquartz Pressure Drift (5)

 If you average two “same-site” pressure records, how
well can this approximate a drift-free record?

— Test by comparing near-neighbor averages of raw records
against the accurately dedrifted curves

* Near-neighbors could be 0.1 to 0.4km apart
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* These 46K sites average very well because they had
small drifts that fortuitously opposed each other.
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Drift Characteristics of
Paroscientific pressure sensors

 Summary ...

— (exponential+linear) fitted curve is well suited to represent the
drift, to which 3 or more processes contribute
— Geostrophic leveling & drift detection is reliable to ~0.01 dbar
« New drift curves differ from previous method of fitting data, although
both use (exp + lin) fit

— Averaging records from two or more ‘same-site’ sensors
produces an average drift, but not zero drift

— Pre-stressing reduces |drift| (usually) < 0.10 dbar / yr
« Small net drift helps reduce uncertainty in fitted drift curve

— Aged sensors improve like good wine

— Dirift of a given sensor is not predictable from one deployment to the
next

« Choose a low range sensor (when possible) to achieve smaller drift



FINI



* Might add histogram of decay time
scale



prs [dbar]

144 drift curves from 92 sensors

144 Drift Curves from 92 Paroscientific Sensors
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IES deployment sites




CPIES array yields...

A CPIES array yields daily maps of
upper and deep circulation.

Look-up tables interpret acoustic travel times as
geopotential height (0 referenced to 5000 dbar).

2-D arrays of CPIES estimate horizontal gradients of
geopotential to calculate geostrophic velocities.

Velocity profiles are referenced by measured near-
bottom currents.

Bottom pressures are leveled using near-bottom
currents to map the geostrophic streamfunction.



LEVELING PRESSURE GAUGE WITH DEEP CURRENT METERS

[ Pre-stress pressure gauges }
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Pre-stress gauges

[ Pre-stress gauges }

Experience has shown that pressure drift is greatly
reduced by preconditioning.

Sensors are subjected to pressures of 3000 dbar for 1-2
months in the lab.



Mapping flowchart
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Leveling (and drift)

The streamfunction from CMs and the pressure from
PIES measure the same geostrophic pressure field.

— The two fields should only differ by a site-dependent
leveling constant.

Other differences arise from error in Ol mapped
streamfunction and drift in the pressure sensor.

The sensor drift is detected by the difference from the
temporal record of geostrophic pressures

The drift is represented by a decaying exponential
plus linear curve, least-squares fitted to this
difference



Consistency of (exp+lin) at ‘same-site’ pair in Kuroshio(2)

KESS Site E7, Separation distance: 0.10 km

0-3(Faros SN = 91521 ' T D]
% 0.2f < i
8
S o1}
£
5 of
I o}
Hd
a -0.2F
Prs = §263.34 dbﬁr » 2 1 1 1 1
200 300 400 500 600 700 800 900
0-3(Faros SN = 91853 ' . g g DA, ]
8
R
£
—
©
+
o~
2 I
o N
Prs = §263.84 dbar X , , \ . \
E 200 300 400 500 600 700 800 900
2 03
g _|variance = 3.0047e-05 dbar DAt~ DA |
5 0.2F E
. 01f
wn
a Of
A 01}
£
5 -02}
+ 2 1 1 1 2 2 2 2
2 200 300 400 500 600 700 800 900
(=%

« (rows 1, 2) Another site with two PIES, separately dedrifted

« (row 3) The difference between raw records (blue) agrees with difference
between drift curves (red); rms <0.005 dbar (model 410K)



1st

2nd

3rd

prs [dbar]

prs [dbar]

prs [dbar]

0.5pr

0.4f

0.4F

0.3

0.2F

0.1

-0.2F

-0.3F

0.5pr

0.4F

0.3F

0.2F

0.1F

s drift smaller in 2nd/3rd deplovment?

Paroscientific Model 46K Drift Curves for First Deployment

"

Paroscientific Model 46K Drift Curves for Second Deployment

T T T T T T T

jit

Paroscientific Model 46K Drift Curves for Third Deployment

EGOM

0 100

300 400 500 600 700
Days relative to start of data

200 800

prs [dbar]

prs [dbar]

prs [dbar]

0.5¢r

0.4

0.3}

0.2

0

-0.1F

-0.2F

-0.3F

-0.4f

0.5

0.4

0.3

-0.3F

0.5¢r

0.4

03

0.2f

0.1

-0.1F

-0.2F

-0.3F

-0.4F

0.1

Paroscientific Model 410K Drift Curves for First Deployment
T T T T T T m

3 4

Paroscientific Model 410K Drift Curves for Second Deployment

T T T T T T T

cDrakn

4

Paroscientific Model 410K Drift Curves for Third Deployment

———

cDralg

3 E

-0.5%
0

300 400 500 600 700
Davs relative to start of data

100 200 800



Pressure (dbar)

Subsequent depth shallower/ same/ deeper
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Does drift depend on prior deployment depth?
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Slightly less drift with 'same’ new and old deployment depths.
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Repeatable
drifts? 46K

Twelve representative repeats
of 46K’s having same Bliley
and smallest depth differences
between deployments.

The repeatability of 46K’s looks
promising.

However next look at 410K’s -
not as reproducible



Repeatable
drifts? 410K

These are 2nd
deployments of 410K’s.

Not as reproducible as for
the previous set.

Other factors changed
— Deployment depth
— Time interval between

prs [dbar]

prs [dbar]

prs [dbar]

prs [dbar]

°o o
o N &

[
o o©
> N

0.4
0.2

-0.2
-0.4

°o o
o N &

-0.2

|
o
=

0.4
0.2
0
-0.2
-0.4

410K-101 410K-101 410K-101
90551 0.4|90776 0.4|91136
co7 0.2 C13 0.2 G02
of 0
e
-0.2 -0.2
-0.4 -0.4
410K-101 410K-101 410K-101
91498 0.4|91502 0.4|91525
Fo1| o2 A01 | 0.2 Do1
-0.2 -0.2
-0.4 -0.4
410K-101 410K-101 410K-101
91854 0.4|91857 D2 0.4|91866
GO1 0.2 \ 0.2 Cc20
-0.2 -0.2
-0.4 -0.4
410K-101 410K-101 410K-101
92034 0.4]|92036 0.4]|96850
B03 0.2 F02 0.2 A03
-0.2 -0.2
-0.4 -0.4

0 200 400 600 800

Days relative to start of data

0 200 400 600 800

0 200 400 600 800



