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Abstract 
A unified tidal analysis and prediction framework is developed. A self-consistent 

and complete set of equations is presented that incorporates several recent advances, with 
emphasis on facilitating applicability to the case of irregularly distributed times, and 
includes as special cases nearly all prior methods. The two-dimensional case treated is 
suitable for ocean currents, yields current ellipse parameters, and naturally reduces to the 
one-dimensional case suitable for sea level. The complex number formulation is used for 
matrix solution but relationships to the real formulation, needed for confidence interval 
estimation with irregular times, are included. The two-dimensional generalization of 
Foreman et al. (2009) leads to expressions (including in-matrix treatment instead of post-
fit corrections) incorporating exact times in nodal/satellite corrections and in calculation 
of Greenwich phase from the astronomical argument, as well as exact constituent 
inference. Some of the resulting capabilities include accurate nodal/satellite corrections 
for records longer than 1-2 years, and inference of multiple constituents from a single 
reference. A comprehensive set of constituent selection diagnostics is summarized. 
Diagnostics to assess constituent independence are the conventional Rayleigh criterion 
and its noise-modified variant, the basis matrix condition number relative to the all-
constituent signal-to-noise ratio (SNR), and a newly defined maximum correlation 
between model parameters; diagnostics to assess constituent significance are the SNR 
and percent energy. A confidence interval estimation method for current ellipse 
parameters, based on complex bivariate normal statistics, is presented that generalizes the 
colored Monte Carlo method of Pawlowicz et al (2002): the model parameter covariance 
matrix is not constrained to a presumed form and is scaled using both auto- and cross-
spectra of the residual, as computed by fast Fourier transform or Lomb-Scargle 
periodogram in the case of regularly or irregularly distributed times respectively. 
 Descriptions are provided for the functionality and syntax of a pair of Matlab 
functions denoted “UTide”—ut_solv() and ut_reconstr()—that implement the unified 
analysis and prediction framework. Output of ut_solv() includes a table of all diagnostics, 
organized to make constituent selection efficient. The robust iteratively-reweighted least 
squares (IRLS) L1/L2 solution method, explored by Leffler and Jay (2009) for the one-
dimensional case with uniformly distributed times, is used because it limits sensitivity to 
outliers and can substantially reduce confidence intervals. Prior methods (for example, 
capabilities of the t_tide Matlab package of Pawlowicz et al. (2002), including the 
automated decision tree of Foreman (1977) for constituent selection) are available using 
option flags: ordinary least squares can be used (instead of IRLS); nodal corrections 
and/or Greenwich phase lag calculations can be omitted, or carried out using linearized 
(instead of exact) times; inference can use the traditional approximate method (instead of 
the exact formulation); and confidence intervals can be estimated using the linearized 
method (instead of Monte Carlo simulation), and/or using the white noise floor 
assumption (instead of scaled by colored residual spectra). Reconstructed superposed 
harmonic fits (hind-casts or forecasts/predictions) can be generated by ut_reconstr() at 
arbitrarily chosen sets of times, using subsets of constituents (for example, based on 
meeting a SNR threshold, or as specified by the user). Finally, the same treatment can be 
applied to each record in a group of records—such as observations from multiple buoy 
sites and/or multiple depths, or numerical simulation output from multiple model grid 
nodes—by a single execution of ut_solv() and ut_reconstr().
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I. Introduction 
Development of this unified tidal analysis was motivated mostly by the need to 

carry out tidal analysis on a multi-year sequence of current observations collected at 
irregularly spaced times (Codiga 2007). Observational datasets with these characteristics, 
less common not long ago, are increasingly available; observing system developments 
mean longer field campaigns are being sustained, and it is also typical for them to have 
substantial gaps and/or irregularly distributed temporal sampling. However, it is widely 
recognized that many commonly available standard software packages for tidal analysis, 
while highly sophisticated and mature in many ways, require special treatment for such a 
dataset.  
 

Throughout the following, reference is made to the topics of nodal/satellite 
corrections, computation of Greenwich phase using the astronomical argument, and 
constituent inference. These issues are explained comprehensively in numerous 
publications, including the textbook of Godin (1972) (G72), so they will not be reviewed 
here except superficially. Readers unfamiliar with them are referred to Foreman and 
Henry (1989) (FH89) and Parker (2007) as examples of accessible entry points to the 
literature.  
 

One reason there are limitations to the applicability of traditional tidal methods to 
multi-year records is that results of the standard (linearized times) method for the 
nodal/satellite corrections becomes inaccurate for records longer than a year or two (e.g. 
FH89). This necessitates breaking the record into subsets with durations of about a year, 
subjecting each to separate analyses, and then combining the results in a final step, for 
which there seems not to be a standard practice. Another limitation of nearly all standard 
methods is the requirement of uniformly distributed temporal sampling. For irregular 
temporal sampling, while an effective approach has recently been developed for the one-
dimensional case (e.g. sea level) (Foreman et al. 2009) (FCB09), constituent selection 
methods remain less well-defined, suggesting the need for new diagnostics. In addition, 
to the extent that the solution method or confidence interval calculation relies on auto- 
and/or cross-spectral quantities, in the case of irregular times the fast Fourier transform 
(FFT) relied on by some methods cannot be applied. A Lomb-Scargle least squares 
spectral estimation approach (e.g., Press et al. 1992) is suitable for this but has not been 
implemented. These issues are all addressed here. 
 

The primary goal is to develop a tidal analysis approach and accompanying 
software tool (“UTide”) that (a) integrates several existing tidal analysis methods with 
each other (Table 1), and (b) includes enhancements specifically designed to enable 
treatment of multi-year records with irregular temporal sampling. The main foundation is 
the theory for harmonic analysis laid out by G72, then extended for practical applications 
by (Foreman 1977; 1978) (F77, F78) with accompanying Fortran programs, and further 
discussed by FH89. This foundation was coded in to Matlab as the “t_tide” package by 
Pawlowicz et al. (2002) (PBL02), which has become a widely accepted standard utility in 
the physical oceanographic community. PBL02 added a confidence interval estimation 
method that could use the spectral characteristics of the residual instead of presuming a  
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Table 1. Comparison of features of UTide and prior software products. 
 F77, F78 PBL02 LJ09 FCB09 UTide 
Nodal/satellite 
corrections 

Post-fit, 
linearized 
times 

(same) (same) In-matrix, 
exact times  

In-matrix; 
Default exact 
times; Optional 
linearized times  

Astronomical 
argument for 
Greenwich 
phase 

Post-fit, 
linearized 
times 

(same) (same) In-matrix, 
exact times 

In-matrix; 
Default exact 
times; Optional 
linearized times 

Consituent 
inference 

Post-fit, 
approx. 

(same) (same) In-matrix, 
exact 

In-matrix; 
Default exact; 
Optional approx. 

Missing-data 
gaps (in 
regular time 
grid) 

Linearly 
interp’d 

(same) (same) In-matrix 
(missing 
points 
omitted) 

Default in-
matrix; For 
regular temporal 
sampling, 
optional linearly 
interpolated 

Irregular times No (same) (same) In-matrix In-matrix 
Confidence 
interval 
method 

Cosine/ 
sine 
coeff’s; 
presumed 
white 
residual 
spectra  

Current 
ellipse 
param’s; 
lin’zd or 
Monte-
Carlo; 
white or 
resid. spec. 
(FFT); 
simplified 
covar’nce 
Matrix 

(same) Cosine/ 
sine coeff’s; 
presumed 
white 
residual 
spectra  

Current ellipse 
param’s; lin’zd 
or Monte-Carlo; 
white or resid. 
spec. (FFT 
regular times, 
Lomb-Scargle 
irregular times); 
general 
covar’nce matrix

Solution 
method 

OLS (same) IRLS OLS Default IRLS; 
Optional OLS 

Complex two-
dimensional 
case  

Yes (same) (same) No Yes 

Matlab No Yes (same) No Yes 
Enhanced 
diagnostics for 
constituent 
selection 

No (same) (same) (same) Yes 

Analyze 
multiple 
records with 
one execution  

No (same) (same) (same) Yes 

 5



white noise floor. They also added the capability to generate confidence intervals for the 
four current ellipse parameters, from the uncertainties in the cosine and sine model 
coefficients, using either a linearized form of the nonlinear underlying relations or Monte 
Carlo uncertainty propagation. Leffler and Jay (2009) (LJ09) investigated robust solution 
methods and demonstrated that an iteratively-reweighted least squares (IRLS) approach 
can minimize the influence of outliers, thereby reducing confidence intervals relative to 
the standard ordinary least squares (OLS) method, leading to important consequences for 
the constituent selection process. They investigated the one-dimensional case with 
uniformly distributed times using a modified version of the PBL02 package that 
implements the IRLS approach with the robustfit() function provided in the Matlab 
Statistics Toolbox. Finally, Foreman et al (2009; FCB09) presented a method and 
accompanying Fortran code to handle irregularly distributed temporal sampling. In 
addition, their method includes exact “in-matrix” formulations for nodal/satellite 
corrections, the astronomical argument for Greenwich phase calculation, and inferences, 
such that the corrections are accurate over multi-year time periods. Their approach also 
permits inferring multiple constituents from a single reference constituent. The upper 
limit of record length for accurate nodal/satellite corrections by the FCB09 method is 
18.6 years, beyond which methods without nodal/satellite corrections are applicable 
(Foreman and Neufeld 1991), although FCB09 demonstrated the utility of their 
formulation for longer records when nodal/satellite corrections are omitted.  
 

UTide consists of a pair of Matlab functions designed to be easy to understand 
and implement: ut_solv() for analysis, and ut_reconstr() to use the analysis results for 
reconstruction of a time sequence for a hind-cast or forecast/prediction if needed. They 
are intended to be helpful in streamlining the various stages of most typical tidal 
analyses, including constituent selection and confidence interval estimation, for both two-
dimensional (e.g., tidal currents) and one-dimensional (e.g., sea level) cases. The analysis 
function accepts records with times that are uniformly or irregularly distributed, and can 
provide accurate nodal correction results for records with durations of up to 18.6 years. 
The reconstruction function accepts arbitrary times and permits generation of 
reconstructed fits using a subset of constituents, for example based on a signal-to-noise 
(SNR) criterion or as specified by the user. While the functions incorporate a set of 
optimal default choices that should help make analysis straightforward for users that are 
less familiar with the details of tidal methods, they also accept options that enable 
convenient experimentation with different method choices. 
 

In addition to combining most features of the prior approaches described above 
together in a single package, the following new contributions are made: 

• development of single set of equations, for which (a) each of the prior methods 
can be obtained as a special case, and (b) nodal/satellite corrections, Greenwich 
phase computation by astronomical argument, and inferences are all included in-
matrix instead of being carried out as post-fit corrections; 

• backwards compatibility with each of the prior methods, including “mix and 
match” choices for individual methods of corrections and confidence intervals, 
which is a useful capability to ground-truth new results against results from prior 
analyses, as well as to investigate the sensitivity of results to method choices; 
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• enhanced diagnostics to aid constituent selection, particularly when the input 
times are irregularly distributed, by presenting signal to noise ratios with 
constituents ordered by their energy level, and by inclusion of indicators for 
straightforward application of the conventional Rayleigh criterion, as well as the 
noise-modified version proposed by Munk and Hasselmann (1964), and a new 
diagnostic based on the correlations among model parameters;  

• an improved confidence interval calculation building on that of PBL02 to use both 
the auto- and cross-spectral character of the residual, estimate them by Lomb-
Scargle periodograms in the case of irregularly distributed times, and apply Monte 
Carlo uncertainty propagation with fully general model parameters covariance 
matrix; 

• extension of the FCB09 methodology to (a) solution for the two-dimensional case 
(e.g., tidal currents) in the complex formulation, (b) computation of reconstructed 
tidal series (superposed harmonics, or the “fit”) at a sequence of arbitrary times 
other than the input times, and (c) implementation in Matlab; and 

• analysis of a group of records by a single execution of the UTide functions, which 
proves valuable when the tidal analysis is to be applied to multiple records (e.g., 
an array of fixed observation sites, or output from a simulation at multiple grid 
points). 
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II. Unified equation development 

II.A. Model equations 
This section considers the model equations for a single time sequence, referred to 

as the “raw input”, which can be observations, numerical simulation output, synthesized 
records, etc. An example for two dimensional raw input is a record of east and north 
velocity components from a single depth, or their depth-averages; an example for one 
dimensional raw input is a sea level record. 
 

The raw inputs can have uniform or non-uniform temporal sampling, and the 
development is intended to incorporate nodal/satellite corrections for records of duration 
up to 18.6 years, but could be useful for longer records (as noted above) through 
omission of the nodal/satellite corrections. 
 

The set of constituents chosen for inclusion in the model, along with the set of 
constituents (if any) chosen to be inferred and their associated reference constituents, are 
presumed known in this section, based on a previously completed constituent selection 
process. Section II.D below addresses diagnostics useful for constituent selection.  
 

The matrix formulation and solution method is taken up in Section II.B and 
Section II.C covers the confidence interval calculations. 

II.A.1. General case: complex, two-dimensional 
The model equation in the most general case (two-dimensional, complex notation, 

including inferences) is presented here first. Section II.A.2 explains how the one-
dimensional case follows as a subset of these general equations, and Section II.A.3 
explains the relationships between the complex formulation and the corresponding real 
formulation, which are useful for the confidence interval calculation. 
 

The most general case, described in this subsection, is the basis for the UTide 
Matlab code, since all prior methods (see Table 1) and all subsets (e.g., one-dimensional 
case, real notation case) can be obtained as special cases.  
 

Symbols retain their meaning throughout the document. To the extent possible, 
they have been selected for consistency with the prior developments cited in Table 1.  
 

The raw input consists of real-valued  and real-valued , where  
and v  are perpendicular Cartesian components of the velocity and the arbitrarily 
distributed times are , where 

)( i
raw tu )( i

raw tv u

it tni ...1= . By convention the two components are directed 
eastward and northward respectively, but more generally they can be the pair of 
components along the first and second axes in any right-handed coordinate system. The 
complex form of the raw input 

 )()()( i
raw

i
raw

i
raw tivtutx +=  (1) 
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is the quantity for which the model, , is constructed. )()()( modmodmod
iii tivtutx +=

 
The model equation in its simplest form is 

( )∑
=

−+ −⋅+++=
allcn

q
refiqiqqiqi ttxxaEaEtx

1

*mod )()( & . (2) 

The summation is over all  constituents (non-reference, reference, and 
inferred, as explained below) in the model. Each constituent has constant complex 
amplitudes  for components that rotate counter-clockwise and clockwise in time, 

which multiply the complex exponential functions  explained in detail in the next 
paragraph below. The mean 

allcnq ...1=

−+
qq aa ,

*, iqiq EE
viux +=  combines the respective means of the two real 

components. The trend, if included in the model, has coefficient viux &&& +=  that similarly 
combines those of the two real components, and is computed relative to the reference 
time ; by convention  is a time central among the raw input times, and here it is 
defined as the average of the first and last raw input times,  

reft reft

 2/)( 1 tnref ttt += . (3) 

II.A.1.a. Pre-filtering and nodal/satellite corrections; Greenwich phase lags 
 In the complex plane an individual harmonic constituent of radian frequency qω  
consists of a superposed pair of components counter-rotating in time, with complex 
coefficients denoted by +  and - superscripts for counterclockwise- and clockwise-
rotation respectively. The counterclockwise- and clockwise-rotating elements that the 
complex coefficients multiply take exponential forms  and , respectively, where iqE *

iqE
)],(),([exp),()(),( qiqiqiqqiiq tVtUitFPtEE ωωωωω +⋅⋅==

)(exp iqiqiqq VUiFP +=  (4) 

and the shorthand expressions 
 )( qq PP ω= , ),( qiiq tFF ω= , ),( qiiq tUU ω= , and ),( qiiq tVV ω=  (5) 

represent the following real-valued functions: 
• the correction factor for pre-filtering, )( qP ω , a dimensionless transfer function of 

the filter that was applied to the raw input )( i
raw
q tx  prior to the analysis  

o )( qP ω  is set to unity in the case of no pre-filtering 
o )( qP ω  can be complex, in which case )Im()Re( qq PP = ; 

• the nodal/satellite correction amplitude factor ),( qitF ω  (unitless) and phase offset 
),( qitU ω  (radians), evaluated at time it  for constituent q  

o ),( qitF ω  and ),( qitU ω  are set to unity and zero respectively, for the case 
of no nodal/satellite corrections 

o in addition, as explained more fully in Section II.A.4.a below, in the 
traditional linearized times development ),( qreftF ω  and ),( qreftU ω  
appear in place of ),( qitF ω  and ),( qitU ω  here; and  
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• the astronomical argument ),( qitV ω (radians), which ensures resulting phase lags 

( v
q

u
qq , introduced below) are relative to the equilibrium tide at 

Greenwich  
qq ggggg ,,,, −+

o ),( qitV ω  is replaced by )( refiq tt −⋅ω  in order for reported phase lags to 
instead be uncorrected “raw” phase lags relative to reference time reft  

o in addition, as explained more fully in Section II.A.4.b below, in the 
traditional linearized times development, )(),( * refiqq tttV −⋅+ωω  appears 
in place of ),( qitV ω  here. 

Regarding notation, the traditional symbols for nodal/satellite corrections and u  are 
capitalized here in order to reduce ambiguity with their commonplace use in 
oceanographic literature as symbols for the Coriolis parameter and eastward velocity 
component respectively. In addition, for convenience the Greek symbol 

f

ν  commonly 
used for the astronomical argument is replaced by V —also capitalized, to help reduce 
ambiguity with its commonplace use for the northward velocity component. 

II.A.1.b. Current ellipse parameters 
In the two-dimensional case the amplitude and phase information for each 

constituent is conventionally reported as four current ellipse parameters. The complex 
coefficients have associated positive, real magnitudes  and associated phases 

, 

−+
qq AA ,

−+
qq εε ,

 
+++ = qqq iAa εexp  
−−− = qqq iAa εexp , 

(6) 

where 

 
|| ++ = qq aA             )]Re(),arctan[Im( +++ = qqq aaε

|| −− = qq aA            , )]Re(),arctan[Im( −−− = qqq aaε
(7) 

and the Greenwich phase lags for the rotating components (see, e.g., G72) are  

 
++ −= qqg ε  

−− = qqg ε . 
(8) 

 
For an individual constituent the tip of the velocity vector in the complex plane 

traces out an ellipse during each full period. Current ellipse parameters are expressed in 
terms of the magnitudes and phases of the complex amplitudes as 

 

)( −+ += qq
smaj
q AAL  

)( −+ −= qq
smi
q AAL η  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
=

−+

π
εε

θ ,
2

mod qq
q  

qqqg θε +−= + . 

(9) 

and are defined as 
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• the semi-major axis length smaj
qL (positive; same units as vu, ); 

• the semi-minor axis length ηsmi
qL  (positive for counterclockwise rotation in time, 

negative for clockwise rotation in time; same units as vu, );  
• the orientation angle qθ  (positive counterclockwise from the positive u  axis, 

which in the conventional case is eastward; radians, range 0 and π ) of the semi-
major axis that is (following PBL02) directed toward the positive v  axis, which in 
the conventional case is northward; and  

• the Greenwich phase lag qg (radians, range 0 to π2 ) of the vector velocity 
relative to the time of its alignment with the semi-major axis that has a component 
directed toward positive v , which in the conventional case is northward.  

Note that  with no superscript denotes the Greenwich phase lag of the vector velocity, 
and care should be taken to avoid confusion between it and the Greenwich phase lags 

 

qg

−+
qq gg , (8) of the counterclockwise- and clockwise-rotating components, as well as the 

Greenwich phase lags  of the  and  components, defined in v
q

u
q gg , u v (24) below. The 

inverse relations for the complex amplitudes,  

 
)(exp]2/)[( qq

smi
q

smaj
qq giLLa −+=+ θη  

)(exp]2/)[( qq
smi
q

smaj
qq giLLa +−=− θη , 

(10) 

prove useful in the confidence intervals development below. By convention, the four 
current ellipse parameters (9) are reported, but the equivalent information could be 
reported as complex magnitudes  and Greenwich phase lags  from −+

qq AA , −+
qq gg ,

v

(7), or as 

the real amplitudes and Greenwich phase lags  of the u  and  components, 
defined in 

v
q

u
q AA , v

q
u
q gg ,

(24) below. 

II.A.1.c. Constituent inference 
To make constituent inference clear, model equation (2) is rewritten in the form 

( ) ( )∑ ∑ ∑
= = =

−+−+−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++++=

NR R
k
I

k

kkkk

n

j

n

k

n

l
lillilkikkikjijjiji aEaEaEaEaEaEtx

1 1 1

***mod ˆ̂ˆ̂ˆˆ)(  

)( refi ttxx −⋅++ & . 
(11) 

Here, the first summation represents contributions of a sequence of harmonic 
constituents, with complex coefficients  for −+

jj aa , NRnj ...1= , that are denoted “non-
reference” (subscript NR), because they are not used as reference constituents to infer 
other constituents. The second summation is non-zero only if inferred constituents are 
included in the model; it represents the combined contributions from both (a) the 
sequence of  reference constituents (subscript R), in its first two terms, and (b) a 

total of inferred constituents (subscript I), including a sequence of  

inferred constituents for the k th reference constituent, in the interior summation term. 
The hat notation for the complex coefficients  indicates reference constituents, and 

Rnk ...1=

∑
=

Rn

k

k
In

1
=In k

Ik nl ...1=

−
kâ+

k ,â
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the double-hat notation for the complex coefficients  indicates inferred 
constituents. Thus all constituents in the model collectively number .  

−+
kk ll aa ˆ̂,ˆ̂

IRNRallc nnnn ++=

allcnq ...1=
 

It can thus be seen that, in the expressions prior to (11) above, (a)  
denotes any of the indices j , , or  and (b) for k kl a gA ,,, ε  variables, and current ellipse 
parameters, the hat and double-hat notation is implied; for example,  represents , 

, or . 

+
qa +

ja
+
kâ +

kl
â
 
By definition, an inferred constituent is characterized by an amplitude ratio and 

phase offset that are known, relative to its designated reference constituent, from 
auxiliary information prior to the tidal analysis at hand. The real-valued inference 
amplitude ratios and phase offsets  , −+

kk ll rr , −+
kk ll ςς ,

 
+++= kll AAr

kk
ˆ/ˆ̂              r  −−

kl AA
k

ˆ/ˆ̂

− − lk gg ˆ̂ˆ

)

−=lk

+++ −=
kk lkl gg ˆ̂ˆς             −− =

kkl
ς

(12) 

are specified for the th inferred constituent relative to the th reference constituent. 
The complex coefficients of the inferred constituents are  

kl k

 
+++ = kll aRa

kk
ˆˆ̂  
−−− = kll aRa

kk
ˆˆ̂ . 

(13) 

where the complex inference constants are defined 

 
+++ =
kkk lll irR ςexp  

exp( −−− −=
kkk lll irR ς . 

(14) 

 
 The model equation that is recast in matrix form below, and solved in practice, 
results on substitution of (13) into (11) and is 

 ( ) ( ) )( reftt −ˆ~ *
kik aE −−

⎟
⎟
⎠

⎞+
kl

R

⎟
⎟
⎠

⎞−
kl
*

kl ...1=

ˆ~)(
1 1

*mod
n

j

n

k
kikjijjiji xxaEaEaEtx

NR R

⋅+++++=∑ ∑
= =

++−+ & , (15) 

in which the modified exponential functions are, following FCB09 but here in the 
complex formulation, 

 
⎜
⎜
⎝

⎛
+= ∑

=

+
k
I

k

k

n

l
ilikik QEE

1
1~  

⎜
⎜
⎝

⎛
+= ∑

=

−
k
I

k

k

n

l
ilikik RQEE

1

1~ . 
(16) 

The latter expressions include summations over the  constituents to be inferred 
from the th reference constituent, and the unitless complex weighting parameter for 
inferences 

k
In

k
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 )(exp
),(
),(

),( ikilikil
ikk

ill

ik

il

ki

li
liil VVUUi

FP
FP

E
E

tE
tE

tQQ
kk

kkkk

kk
−+−====

ω
ω

ω . (17) 

Note that (15) is cast in terms of (a) the complex coefficients for the non-reference and 
reference constituents, and (b) the complex inference constants (14), which appear in the 
modified exponential functions of (16). Because the complex coefficients of the inferred 
constituents do not appear in (15), the inferred constituents are solved for indirectly. 

 
It should be emphasized that this formulation for inferences is exact. In contrast to 

the traditional approximate method (details provided in Section II.A.4.c below), in which 
the amplitude and phase of the reference frequency are corrected post-solution using an 
approximation, here inferences are accomplished inherently as part of the model equation 
(FCB09) and can affect all the other constituents (not just their reference constituents). 
Furthermore, the present formulation permits inference of multiple constituents from a 
single reference frequency, which is not the case in the standard traditional method. 
Finally, unlike the traditional method, this treatment of inferences does not break down 
where the amplitude of the reference constituent tends toward zero, such as near 
amphidromic points, as Godin (1972) pointed out is the case for the traditional method. 

II.A.1.d. Summary 
The model characteristics can be summarized in terms of the input and output 

information. The input information consists of  
• complex-valued raw input )( i

raw tx , formed as the combination of the real-valued 
raw inputs )( i

raw tu  and )( i
raw tv , as in (1); 

• the names and frequencies of NRn  non-reference constituents to be included; 
• if inferred constituents will be included, 

o the names and frequencies of Rn reference constituents to be included 
o the names and frequencies of a total of In  inferred constituents (  

inferred constituents for the k th reference constituent), together with real-
valued inference amplitude ratios −+

kk ll rr , and phase offsets −+
kk ll ςς ,  for each 

inferred constituent relative to its reference constituent; and 

k
In

• whether or not a trend is to be included in the model. 
The output information conventionally consists of 

• four current ellipse parameters ( g ) for each of the 

IR  (non-reference, reference, and inferred) constituents; 
LL smismaj ,,, θη

NRallc nnnn ++=
• mean values u  and v ; and 
• trend coefficients u&  and v& , if the trend was included. 

II.A.2. One-dimensional case, complex 
Exposition of how the above general equations for two-dimensional raw input are 

simplified in the special case of one-dimensional raw input is useful. In this case the raw 
input is the real-valued , representing any one-dimensional quantity, for example 
sea level. In the above equations, substitute 

)( i
raw tη

η  everywhere for u , and take all v  
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parameters to be identically zero. The result is that for any constituent (subscripts and/or 
hats dropped), 

 *−+ = aa  (18) 
or equivalently 

 
−+ = AA  
−+ −= εε , 

(19) 

and therefore the current ellipse is degenerate ( , 0=ηsmiL 0=θ ) and lies along the real 
axis with real amplitude and Greenwich phase lag  

 
−+ === AALA smajη  

−+ =−= εεηg . (20) 

 
With respect to inference, for known real-valued inference amplitude ratios and 

phase offsets  

 
ηηη
kll AAr

kk
ˆ/ˆ̂=  
ηηης
kk lkl gg ˆ̂ˆ −=  

(21) 

it follows that the modified exponential functions are *~,~
ikik EE , where  

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= ∑

k
I

k

kk

n

l
lilikik RQEE η1~

−+ == ikik EE

 

( ~~ ), 

(22) 

and 

 
ηηη ς
kkk lll irR exp=  

( ). *−+ ==
kk ll RR

(23) 

II.A.3. Relations to real formulation 
It is valuable to understand the relation of the above complex formulation to its 

real counterparts—both to gain a more intuitive understanding of the one-dimensional 
analysis, and also for later use in the derivation of confidence intervals (Section II.C). 
The two-dimensional case is treated first, followed by the one-dimensional case.  

 
Underlying the complex form of the model equation above are expressions for the 

real-valued components of the th constituent (non-reference, reference, or inferred),  q

 
)()cos()(mod

refi
u
qiqiqiqq

u
qiq ttuugVUFPAtu −⋅++−+= &  

)()cos()(mod
refi

v
qiqiqiqq

v
qiq ttvvgVUFPAtv −⋅++−+= & , 

(24) 

where  represents any of the q j , , or  indices, and throughout this subsection hat and 
double-hat variables are not explicitly shown but all relations apply to them. Here, 

 are the real-valued amplitudes and Greenwich phase lags of the respective 
Cartesian velocity components. Real-valued cosine and sine coefficients are defined as  

k kl

v
q

v
q

u
q

u
q ggA ,, A,

 u
q

u
q

u
q gAX cos=    v

q
v
q

v
q gAX cos= (25) 
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u
q

u
q

u
q gAY sin=   , v

q
v
q

v
q gAY sin=

such that corresponding relations to the amplitudes and Greenwich phase lags are  

 
22 u

q
u
q

u
q YXA +=                22 v

q
v
q

v
q YXA +=  

( )u
q

u
q

u
q XYg ,arctan=             ( )v

q
v

q
v
q XYg ,arctan= . 

(26) 

By use of shorthand definitions 

 
)cos( iqiqiqqiq VUFPC +=  
)sin( iqiqiqqiq VUFPS +=  (27) 

and sine and cosine addition formulae, (24) is written 

 
u

qiq
u
qiqiq YSXCtu +=)(mod  

v
qiq

v
qiqiq YSXCtv +=)(mod , 

(28) 

leading to the relation between the complex and real formulations, 

 
)( v

qiq
v
qiq

v
qiq

u
qiq YSXCiYSXC +++  

−+ += qiqqiq aEaE * . 
(29) 

 
The complex coefficients can be expressed in terms of complex combinations of 

the cosine and sine coefficients,  
 v

q
u
qq iXXX +=      and     , v

q
u

qq iYYY += (30) 
as 

 2/)( qqq iYXa −=+     and       , 2/)( qqq iYXa +=− (31) 
and therefore take the form 

 
2/)]()[( u

q
v
q

v
q

u
qq YXiYXa −++=+  

2/)]()[( u
q

v
q

v
q

u
qq YXiYXa ++−=− . 

(32) 

such that  

 

22 )()(
2
1 u

q
v
q

v
q

u
qq YXYXA −++=+  

)](),arctan[( v
q

u
q

u
q

v
qq YXYX +−=+ε  

22 )()(
2
1 u

q
v
q

v
q

u
qq YXYXA ++−=−  

)](),arctan[( v
q

u
q

u
q

v
qq YXYX −+=−ε . 

(33) 

The inverse relations of (31) are, using (30), 

 
−+ +=+= qq

v
q

u
qq aaiXXX              

−+ −=−=− qq
u

q
v

qq aaiYYiY , 
(34) 

or equivalently 

 
)Re( −+ += qq

u
q aaX            )Im( −+ −−= qq

u
q aaY

)Im( −+ += qq
v
q aaX           , )Re( −+ −= qq

v
q aaY

(35) 

which are useful, for example, to compute the real amplitudes and Greenwich phase lags 
of the  and  components via u v (26), when the complex coefficients are known. 

 15



 
 In the one-dimensional case, for all v  variables identically zero and  *−+ = aa
(18), replacing  by u η , it follows that 

)Re(2)Re(2* −+++−+ ==+=+== qqqqqqqq aaaaaaXX η  

)Im(2)Im(2)()( * −+++−+ −==−=−== qqqqqqqq aiaiaaiaaiYY η , 
(36) 

which results in some simplification of the above relations. With respect to inference,  
the complex form −−++ + qiqqiq aEaE *~~  is recast as  

 ηηηη
qiqqiq YSXC ~~

+  (37) 
where (as shown by FCB09) 

 

( )∑
=

−+=
k
I

k

kkkk

n

l

s
lil

c
lilikik RSRCCC

1

~η  

 , ( )∑
=

++=
k
I

k

kkkk

n

l

c
lil

s
lilikik RSRCSS

1

~η

(38) 

using inference constants defined as s
l

c
l kk

RR ,

 
ηη ς
kkk ll

c
l rR cos=  

ηη ς
kkk ll

s
l rR sin= . 

(39) 

II.A.4. Prior methods as special cases 
The equations in the preceding sections generalize those of FCB09 and differ 

from various earlier methods, including PBL02, in three main ways. The first difference 
is that nodal/satellite corrections use exact times, instead of estimated linearized times. 
The second difference is that the astronomical argument uses exact times. The third 
difference is that inferences are handled in an exact way instead of using an 
approximation. This subsection explains the modifications to the above development that 
are required in order to recover results from the earlier methods. 
 

The decision to use an earlier method in the UTide functions can be made 
independently for some or all (in ‘mix and match’ fashion) of these three differences. 
This enables complete sensitivity analyses to be carried out when investigating the 
relative importance of the differences. 

II.A.4.a. Nodal/satellite corrections using linearized times 
In order to implement the nodal/satellite corrections using linearized times instead 

of exact times, throughout the above development replace ),( qitF ω  and ),( qitU ω  with 
),( qreftF ω  and ),( qreftU ω , respectively. As above,  represents any of the q j , , or  

indices. The fixed reference time  is arbitrary but usually taken to be a time that is 
central among the raw input times, in order to increase the accuracy of the corrections; 
here  is as defined in 

k kl

reft

reft (3). 
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As noted above, in order to omit nodal/satellite corrections entirely, ),( qitF ω  and 
),( qitU ω are replaced everywhere by one and zero, respectively.  

II.A.4.b. Greenwich phase lags: linearized times in astronomical argument 
In order for linearized times to be used instead of exact times, in the conversion to 

Greenwich phase lag by correction with the astronomical argument, replace ),( qitV ω  
everywhere by )(),( refiqqref tttV −⋅+ωω . 

 
As noted above, in order to entirely omit the conversion to Greenwich phase lags, 
),( qitV ω  should be replaced everywhere by )( refiq tt −⋅ω , with the result that  values 

are raw phase lags relative to the reference time. 
g

II.A.4.c. Approximate inferences 
In cases where the nodal/satellite corrections are either omitted or carried out 

using linearized times, and the Greenwich phase calculations are also either omitted or 
carried out using linearized times—that is, in cases for which neither of these two 
corrections are exact—inferences by the approximate method (see G72, F77, and F78 for 
the derivation and explanation) can be recovered as follows. Note that the customary 
application of the approximate method precludes use of a single reference constituent for 
multiple inference constituents. As a result the index  never differs from 1, or 
equivalently  for any reference constituent . 

kl
1=k

In k
• First, solve the model equation using 0== −  for all k . This has the effect 

that the non-reference and reference constituents are treated identically in the 
model, such that the first and second summations in 

+
kk ll RR

(15) differ only in the ranges 
of their indices.  

• Then, use the results −+
kk aa ˆ,ˆ  from that solution, for the complex coefficients of the 

reference constituents, to compute corrected complex coefficients of the reference 
constituents 

 
),(1

1ˆˆ ,
kkk lrefll

kcorrk tQR
aa

ωβ +
++

+
=  

),(1
1ˆˆ *,

kkk lrefll
kcorrk tQR

aa
ωβ −

−−

+
= , 

(40) 

 where Q  is as defined in (17) and  

 
( )

))((
))((sin

1

1

kln

kln
l

kt

kt

k tt
tt

ωω
ωω

β
−−

−−
= . (41) 

• Finally, use −  instead of −+
kk aa ˆ,ˆ  (i) in +

corrkcorrk aa ,, ˆ,ˆ (7) and (9) to compute the current 
ellipse parameters for the reference constituents, and (ii) in (13) to calculate the 
complex coefficients of the inferred constituents, from which the current ellipse 
parameters for the inferred constituents are computed. 
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II.B. Matrix formulation and solution method 
The model equation (15) as developed above is readily cast in matrix form 

 Bmx =mod , (42) 
where symbols without subscripts are understood to be matrices, column vectors, or row 
vectors throughout this section. The modeled values  are a modx 1×tn  column vector, 
complex in the two-dimensional case and real in the one-dimensional case. The basis 
functions comprise the complex-valued mt nn × matrix B , where 2)(2 ++= RNR nnmn  is 
the number of model parameters directly solved for when the trend is included in the 
model, that has form  

 ])1,(~~[ ** tnIEEEEB t
−+=  (43) 

with sub-matrices 
• E , a complex-valued NRt nn ×  matrix with elements ijE  defined as in (4); 

• −+ EE ~,~ , each a complex-valued Rt nn ×  matrix with elements −+
ikik EE ~,~  defined as 

in (16); 
• )1,( tnI , an 1×tn  column vector of unit values; and  
• t , an 1×tn  column vector with real elements )/()( 1tttt

tnrefi −− , normalized such 
that they are order one and unitless as are the other elements of B , in order to 
keep it well-conditioned. 

The model parameters vector  is a m 1×mn  complex-valued column vector of form, when 
the trend is included in the model, 

 T
nnnn xxaaaaaaaam

RRNRNR
]ˆˆˆˆ[ 1111 ′= −−++−−++ &LLLL , (44) 

where  in order to accommodate the normalization of t . When the trend is 
not included in the model, the final column of 

xttx
tn && ⋅−=′ )( 1

(43) and the final element of (44) are 
omitted, and the number of model parameters is 1)(2 ++= RNRm nnn . 

 
The matrix formulation is cast in terms of complex-valued matrices. For most 

cases an equivalent formulation using real-valued matrices exists; an example, though its 
equations were not explicitly presented by PBL02, is the t_tide Matlab code. The 
complex formulation is used here because it facilitates solution of the case of exact 
inferences with two-dimensional raw input, for which there is no equivalent in real-
valued matrices, and because the confidence interval development is in terms of complex 
bi-variate normal statistics of the coefficients. The complex formulation is also the most 
general, and proves to be convenient, although it should be noted that in some cases it 
may not be the most efficient computationally. 
  
 The problem reduces to determining the set of model parameters that minimizes a 
suitable measure of the residual, or misfit between the raw input and the model, 

 Bmxxxe rawraw −=−= mod . (45) 
The residual is an  complex-valued column vector with real-valued corresponding 
Cartesian components  

1×tn

 )Re(mod Bmxuue rawrawu −=−=  (46) 
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)Im(mod Bmxvve rawrawv −=−=  
that are of use in the confidence interval calculation below. As long as  exceeds , 
the system is over-determined with 

tn mn

mt nn −  degrees of freedom and the standard solution 
method (e.g., F77, F78, PBL02) is ordinary least squares (OLS). The OLS solution 
minimizes the L2 norm of e  and takes the form  

 rawHH xBBBm 1)( −= , (47) 
where superscript H  indicates the transpose-conjugate or Hermitian adjoint. To 
determine the OLS solution, the UTide code uses the built-in Matlab ‘backslash’ 
operator. 
 

Once the solution is complete, the resulting model parameters vector (44) 
comprises a set of complex coefficients for the non-reference and reference constituents. 
The complex coefficients of the inferred constituents are then determined from those of 
the reference constituents using (13) with the known complex inference constants (14). 
Finally, for all constituents, the complex magnitudes and phases are then determined 
using (7), from which the current ellipse parameters are computed from (9). 

 
From the solution a hind-cast or a forecast/prediction time sequence can be 

reconstructed at any arbitrary set of times. The simplest way to carry this out is using (2). 
The arbitrarily distributed times  at which the reconstructed values are to be computed 
are used, together with the pre-filtering coefficient, the nodal/satellite amplitude/phase 
corrections and the astronomical argument, to compute 

*
it

−
kâ

kilikij EEE ,, (4). The 
reconstruction uses  in 

kilikij EEE ,,
+−+
kjj aaa ,ˆ,,

(2) with the known model outputs, namely (i) the 

complex amplitudes  of non-reference and reference constituents that were 

solved for directly, (ii) the complex amplitudes of inferred constituents , computed 
using 

−+
kk ll aa ˆ̂,ˆ̂

(13) with the known amplitude ratios and phase offsets, (iii) the mean x , and (iv) if 
included, the trend  and its reference time . x& reft

II.B.1. Iteratively reweighted least squares robust solution 
Robust methods using L1/L2 hybrid norms offer a number of advantages, as 

explored by LJ09. Confidence intervals can be reduced substantially, relative to those for 
the OLS method. In practice, the reduction in confidence intervals relative to the OLS 
solution method is commonly larger than the differences among confidence interval 
results when calculated by the white or colored methods, and/or the linearized or Monte 
Carlo methods (described in detail in section II.C below). In addition, because reduced 
confidence intervals increase SNR, this can mean that a substantially larger number of 
constituents will be considered significant (for example, when using a fixed minimum 
SNR threshold, Section II.D), and therefore selected for inclusion in the model, as 
compared to the OLS case. 

 
In the iteratively-reweighted least squares (IRLS) approach, a weighting of the 

observations is determined as part of the solution, such that the influence of outliers is 
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minimized. In this case, the minimized quantity is a measure of the weighted residual, or 
weighted misfit between the raw input and the model,  

 ),( BmxWWee raw
w −==  (48) 

and similarly 
 uu

w Wee =      , vv
w Wee = (49) 

where W  is an  diagonal matrix with the scalar weight values on the diagonal. In 
this case the general solution is 

tt nn ×

 rawHH WxBWBBm 1)( −= . (50) 
In the case of equally-weighted observations, W  is the identity matrix and (50) reduces 
to the OLS solution as expected. 
 
 For IRLS cases, following LJ09, the UTide code uses the Matlab Statistics 
Toolbox function robustfit(), an iterative solver which implements a user-specified 
weight function selected from among a range of common shapes, with a corresponding 
constant value of the tuning parameter (see Matlab documentation for robustfit()). The 
output, for given choices of weight function and tuning parameter, includes the set of 
optimal model parameters with the corresponding weight matrix W  for the raw inputs.  
 

There are no established guidelines regarding the choice of weight function and 
tuning parameter that is appropriate for any given analysis, and it should be expected that 
the optimal choices will vary depending on the nature of the raw input (one-dimensional 
or two-dimensional, noise conditions), as well as the nature of the sampling duration and 
resolution (e.g., uniformly or irregularly distributed times), in addition to the model 
configuration (number of constituents, etc). A lower tuning parameter generally causes a 
greater penalty against outliers and requires a higher number of iterations. Based on 
analysis of a sea level record from a single location in a tidal estuary, with uniformly 
distributed times of hourly resolution and duration 6 months, LJ09 concluded that the 
best weight function was Cauchy and the best tuning parameter was 0.795 (the Matlab 
default value 2.385, reduced by a factor of 3).  

 
In UTide the default weight function is Cauchy and alternative weight functions 

can be specifed by an optional input (e.g., ‘Huber’,…). The default tuning parameter used 
by UTide is that provided by Matlab for the given weight function (see Matlab 
documentation for robustfit()), and an optional UTide input (‘TunRdn’) can reduce the 
tuning parameter by a specified factor (e.g. 3, as found optimal by LJ09 for their example 
record). Empirical experimentation will be needed for analysis of any given record, to 
determine the appropriate weighting function and tuning parameter. 

II.C. Confidence intervals 
A method to compute uncertainties of the cosine/sine model parameters using the 

basis function matrix was explained by G72, F77, and FH89. In contrast to that method, 
which did not distinguish the spectral nature of the residual and can thus be referred to as 
a presumed “white noise floor” approach, the method put forth by PBL02 and denoted 
“colored” was based on using spectral properties computed from the actual residual. In 
addition, PBL02 presented two methods to determine confidence intervals for the current 
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ellipse parameters, which are not model parameters themselves but are nonlinear 
functions of the model parameters: a linearization approach, and Monte Carlo uncertainty 
propagation (which they denoted the “bootstrap” method). 
 

This subsection presents a new method, the default case in UTide, that builds on 
earlier approaches and (a) generates confidence intervals of the current ellipse 
parameters, using Monte Carlo uncertainty propagation, but generalizes the PBL02 
method by relaxing the simplifying assumptions it made about the form of the covariance 
matrix of functions of the model parameters, (b) is colored and generalized PBL02 to 
incorporate both the auto-spectra and cross-spectra of the  and v  component residuals, 
using their weighted forms 

u
(48) in the case of the IRLS solution method, and (c) is 

amenable to use of spectral estimates for the latter that have been computed either by 
FFT for evenly distributed times, or by Lomb-Scargle periodogram for irregularly 
distributed times. 

 
The default “colored, Monte Carlo” UTide method is explained in the remainder 

of this section. However, UTide allows the alternative to specify (a) use of the white 
noise floor assumption instead of the colored residual spectra, and/or (b) use of the 
linearized approach instead of Monte Carlo. The development below makes clear how the 
white case can be implemented. The linearized method used is that of PBL02 (and 
therefore not explicitly presented here), in which it is presumed that there are no non-zero 
correlations among the coefficients. 
 

For any of these methods, confidence interval estimates are based on the 
assumption that all energy in the residual is noise. In most typical analyses, the record 
contains a sub-tidal (i.e. non-tidal, low frequency, and/or weather-band) signal at 
frequencies lower than tidal, in addition to the random noise and the tidal component. It 
should therefore be recognized that the sub-tidal signal, if not somehow removed prior to 
the analysis, contributes to the confidence intervals and will in general make them 
artificially higher. If not removed, the sub-tidal signal will also tend to make the statistics 
of the residual deviate from the normal statistics presumed by the confidence interval 
calculations. For these reasons, to obtain the most accurate confidence intervals, a simple 
and effective strategy is first to compute the low-pass of the raw inputs and subtract it 
from them, then to perform the tidal analysis on the resulting difference. This approach, 
in effect, accomplishes high-pass filtering. It is simpler than formal application of a high-
pass or band-pass pre-filter, and should in general not require a pre-filtering correction 
(  in qP (5) remains unity). 
 

As described above, relevant context is provided by the fact that using the IRLS 
solution method instead of OLS can have a substantial impact on confidence intervals. In 
many cases they can be reduced to a greater degree than the differences between when 
they are computed using the linearized or Monte Carlo method, and/or the white or 
colored method.   
 

Finally, it is important to note that certain assumptions underlying the 
development in this section are strictly valid, as discussed in FH89, only when the raw 
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input times are uniformly spaced. Therefore the results in the case of irregular times 
should be considered potentially reasonable and approximate first estimates, but should 
be compared against the results for uniform times whenever possible, and used with a 
measure of caution.  
 

The subsections that follow develop expressions for a key covariance matrix 
needed by the Monte Carlo uncertainty propagation method. Implementation of the 
confidence interval calculation, using that result to generate random realizations for 
Monte Carlo simulation, is then explained. 

II.C.1. Complex bi-variate normal statistics 
The model parameters vector  m (44), which includes the complex coefficients for 

the non-reference and reference constituents, is assumed to be a complex normal vector; 
its individual elements are assumed to be complex random variables related to each other 
by complex bivariate normal statistics. Because the complex coefficients of inferred 
constituents do not appear in the model parameters vector, due to the fact that inferred 
constituents are included in the model indirectly (see above), computation of confidence 
intervals for inferred constituents follows a different approach based on the statistics of 
the corresponding reference constituent, as explained in Section II.C.5.  
 

A complex normal vector  of size m 1×mn  is characterized by its complex-valued  
(i) mean ][mE=μ , an 1×mn  vector,  
(ii) covariance , a Hermitian ]))([( H

C mmE μμ −−=Γ mm nn ×  matrix, and 
(iii) pseudo-covariance , a symmetric  matrix, ]))([( T

P mmE μμ −−=Γ mm nn ×
where E[] is the expectation operator and superscripts H and T indicate the complex 
conjugate transpose or Hermitian adjoint, and the ordinary transpose, respectively. Full 
generality is retained, in the sense that no presumption is made that the complex variables 
are “circular” or “proper”, thus allowing for non-zero pseudocovariance .  PΓ
 

A property of the complex bivariate normal statistics (e.g., Goodman 1963) is that 
the variance-covariance matrices between the complex random vector formed from the 
real part of the model parameters vector and the complex random vector formed from its 
imaginary part are 

 

2/)Re()]Re(),cov[Re( PCmm Γ+Γ=  
2/)Im()]Im(),cov[Re( PCmm Γ−Γ−=  

2/)Im()]Re(),cov[Im( PCmm Γ+Γ=  
2/)Re()]Im(),cov[Im( PCmm Γ−Γ= . 

(51) 

As will be seen below, these expressions allow the remainder of the development to 
proceed in terms of real-valued quantities. This is needed to facilitate the use of the 
Lomb-Scargle periodogram for spectral estimates when the distribution of times is 
irregular, because they are computed using the real-valued  rawraw vu , .
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II.C.2. White noise floor case with non-zero cross-correlations 
The following generalizes the development of G72, F77, and FH89 to include the 

two dimensional case, non-zero cross-correlation terms, and the use of complex model 
parameters instead of real cosine/sine coefficients. The weighted complex error  we (48) 
is assumed be a zero-mean complex normal variable. The development is carried out in 
terms of the IRLS case, including the weight matrix, throughout this section; the OLS 
case is recovered through use of the identity matrix for the weight matrix. The total error 
variance  is a real scalar representing the variance of the complex error, equivalent to 
the mean square residual or mean square misfit (MSM) between the raw input and the 
model output,  

2
Cσ

 
mt

rawHHrawHraw

MSMC nn
WxBmWxx

−
−

== 22 σσ . (52) 

By direct analogy with the expression for the total error variance , the total error 
pseudo-variance  is the complex constant  

2
Cσ

2
Pσ

 
mt

rawTTrawTraw

P nn
WxBmWxx

−
−

=2σ . (53) 

It follows that estimates of the mm nn × covariance matrix and pseudo-covariance matrix 
for the model parameters are 

 
21)( C

H
C WBB σ−=Γ  

21)( P
T

P WBB σ−=Γ . 
(54) 

Implementation of formulas based on (51) is simplified below by defining the sum and 
difference of the covariance and pseudo-covariance matrices, which here incorporate all 
model parameters, as  

 PC
allG Γ+Γ=  

PC
allH Γ−Γ= . 

(55) 

 
Each individual constituent, indexed by cnc ...1=  where RNRc nnn += , has two 

complex model parameters 
 cc ma =+      and      . 

cncc ma +
− = (56) 

Throughout Sections II.C.2-4, the symbols  are used to denote the complex 
coefficients of either a non-reference constituent or a reference constituent; that is, for 
reference constituents, the hats on these variables in the previous sections are dropped, 
such that  represents either  or , for example. The 2 x 2 sub-matrices of  and 
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+
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(57) 
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It is presumed that the constituent selection process (Section II.D) has been completed 
such that the covariances and pseudo-covariances between model parameters of different 
constituents can be neglected. 

 
Because the statistics of the real and imaginary parts of the model parameters (51) 

are known, it proves convenient to compute the current ellipse parameters for a given 
constituent from the vector of 4 real-valued (superscript R) parameters  

 )]Im()Re()Im()Re([ −−++= cccc
R
c aaaam  (58) 

rather than from the complex coefficients  themselves (in ). By definition, the 
variance-covariance matrix of  is 
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R
cm

== ),cov()cov(var R
c

R
c

R
c mmm  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

+

+

−−

−+−+

−+−+++

2
)Im(

2
)Re(

2
)Im(

2
)Re(

)]Im(),cov[Re(
)]Im(),cov[Im()]Re(),cov[Im(
)]Im(),cov[Re()]Re(),cov[Re()]Im(),cov[Re(

a

a

a

a

aa
aaaa
aaaaaa

σ
σ

σ
σ

 
(59) 

where the lower left triangle is left blank because the matrix is real-valued and symmetric 
with 10 unique values. In (59), as in similar expressions in the remainder of this 
subsection, for clarity the  subscripts are dropped from elements within the matrix. 
Whereas for simplicity the method of PBL02 (see t_tide code) presumed specific 
relationships among the elements of , for example that  and 

that , these assumptions are relaxed in the present development.  

c

0=

)cov(var R
cm 2

)Im(
2

)Re( ++ =
aa

σσ
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It follows from the statistics of real and imaginary parts of the model parameters 
(51) that under the white noise floor assumption the unique terms in  are, in 
the upper left quadrant, 

)cov(var R
cm
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(60) 

in the lower right quadrant, 
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and in the upper right quadrant, 
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The variance-covariance matrix of  can thus be expressed in terms of  and R
cm ccG ccH  as 
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In order to facilitate more convenient computation of spectral estimates in the 

next subsection using the Lomb-Scargle periodogram for the case of irregular times, the 
spectra of Cartesian (u  and ) components of the residual are computed, as opposed to, 
for example, rotary spectra. However, the Cartesian spectral quantities are not directly 
suitable for scaling  

v

white )(cov R
cmvar (63), which is cast in terms of the complex 

coefficients; the Cartesian spectral quantities are instead appropriate to scale the 
variance-covariance matrix of the vector of the four Cartesian (superscript C) cosine/sine 
coefficients of the constituent (35), 
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The corresponding symmetric 4x4 variance-covariance matrix needed is, by definition, 
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By the defining relations (34) and (35), the 10 unique elements of  consist of 
those in , 
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uuD
)]Re(),cov[Re(22

)Re(
2

)Re(
2 −+++= −+ aa

aaX u σσσ  

)]Im(),cov[Re()]Im(),cov[Re(),cov( −+++ +−= aaaaYX uu  
)]Im(),cov[Re()]Im(),cov[Re( −−+− +− aaaa  
)]Im(),cov[Im(22

)Im(
2

)Im(
2 −+−+= −+ aa

aaY u σσσ ; 

(67) 

those in  vvD
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and those in , uvD
)]Im(),cov[Re()]Im(),cov[Re(),cov( −+++ += aaaaXX vu (69) 
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Finally, based on combining (60)-(62) and (67)-(69), and dropping the cc  
superscripts on G  and  for clarity, the unique elements of in are )(cov C
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and in  are uvD
2/)]cov( 22X u  

 
 

2/)]cov( 22Y . 

(72) 

II.C.3. Colored case using spectra of residuals  
The residual in general has a non-white, or colored, spectral nature typified by 

redness. A means by which to incorporate this (PBL02) in the confidence intervals is to 
scale elements of the covariance matrix derived above for the white noise approach using 
estimates of the actual residual spectrum at a frequency appropriate to the given 
constituent. In the IRLS solution case the appropriate residual is the weighted residual 
(48), as pointed out by LJ09. 

 
Following the approach of PBL02, the spectra are considered “locally white”, and 

averaged over a fixed set of frequency bands encompassing the main groups of 
constituents, after lines of constituents included in the model that fall within that band are 
omitted. The nine averaging bands, in cycles per day (cpd), are M0± 0.1 cpd, M1 0.2 
cpd, M2 0.2 cpd; M3 0.2 cpd, M4

±
± 0.2 cpd, M5± ± ± 0.2 cpd, M6± 0.21 cpd; 0.26-0.29 c

(includes M7),  and 0.30-0.50 cpd (includes M8). For each averaging band, this 
computation yields three real values, each a line-decimated, band-averaged, one-sided (2 
times the two-sided density, except at the zero and Nyquist frequencies, for which the 
one-sided and two-sided values are the same) spectral density: (i)  

pd 

s , the auto-spectral 

density of , the weighted u  component of the residual; (ii) 
ee u

w
uP1

w

u
we s

ee v
w

v
w

P1 , the auto-spectral 
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density of , the weighted v  component of the residual; and (iii) v
we s

ee v
w

u
w

P1 , the rel part of  

the cross-spectral density between  and  or cospectrum. The overbars denote the 
result of the line-decimation and frequency-band averaging.  

u
we v

we

 
The auto- and cross-spectral power terms (not densities) that contribute to the 

collective uncertainties in the model parameters of a constituent, index , with 
frequency 

cnc ...1=
 that lies within the averaged band, are  cω
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(73) 

v
w

u
w

P1
cP

where ωΔ  is the frequency resolution of the spectral calculation. For raw input with 
length of record (LOR) , the frequency resolution is 1tt

tn − eLOR/1=Δω  where the 
effective LOR is 

 LORnnLOR tt ))1/(( ,  (74) = −e

nLOR t tso formulated because e Δ⋅=

u

 in the case of evenly spaced times with time 
separation . tΔ
 

In the case of uniformly distributed times, the spectral quantities are computed by 
the FFT method after application of a record-length Hanning weighting, using the Matlab 
Signal Processing Toolbox function pwelch(). In the case of irregular times, the spectral 
estimates are made using the un-normalized, mean-removed, Lomb-Scargle periodogram 
(Lomb 1976; Scargle 1982; Press et al. 1992). Calculation of the Lomb-Scargle 
periodogram requires specification of a frequency oversampling factor, the amount by 
which the grid of frequencies at which the periodogram estimates are computed is more 
dense than an equivalent FFT. In common applications of the Lomb-Scargle periodogram 
such as astronomy, the goal is to resolve a spectral peak with a certain degree of 
confidence, and high oversampling factors (for example 4 or more) are used in order to 
increase confidence in peak detection. In the present application peak detection is not the 
goal and an oversampling factor of one is used. This approach is taken for practical 
reasons as well: for long records the computational burden of the Lomb-Scargle 
periodogram increases dramatically, meaning that higher oversampling factors will 
require significantly more computing resources, particularly in terms of memory but also 
with respect to processing time. Prior to the Lomb-Scargle periodogram calculation, in a 
manner similar to the approach of Schulz and Stattegger (1997) for irregularly distributed 
times, a record-length Hanning weighting is applied. As a result, in the case of equally 
spaced times the UTide Lomb-Scargle periodogram function with oversampling factor of 
one returns exactly the same result as does pwelch().  
 
 The colored variance-covariance matrix is computed by scaling  
(defined in 

)(covvar C
c

white m
uu

cP
c

(70)-(72)) using the residual spectral power. The spectral power , for the 
weighted residual  of the  component at the frequency of constituent , contributes u

we
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to the variances of  and . Because the elements of  consist of these two 
variances on the diagonal, and the associated covariance off the diagonal, all elements of 

 are normalized by its trace and then scaled by . Similarly,  is scaled by  
after normalization by its trace. The cross-spectral power  contributes to covariances 
between one u  coefficient (  or ) and one v  coefficient (  or ). Because all 
elements of  are covariances (including the elements on the diagonal, unlike for  
and ), the elements of  are normalized by the sum of the absolute values of all 
elements (instead of its trace), and then scaled by | . These relations are expressed  
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where  is the trace operator and ()tr ∑4
indicates the element-wise summation. In the 

special case that all elements of  are zero, in order to avoid division by zero the upper 
right four elements and the lower left four elements (all the  terms) in 

uvD

uv

cov

},smaj

D

)

L

(75) are set to 
zero. 
 
 In certain cases, depending on the model configuration and the spectral 
characteristics of the residual, the estimated is not positive semi-definite. 
Although generally the difference from positive semi-definiteness is minor, when this 
occurs it is not a valid variance-covariance matrix. In this situation, the nearest positive 
semi-definite covariance matrix is used instead, as determined using the method of 
Higham (2002) with identity weight matrix. The method is iterative and if it does not 
converge, a warning message is provided and the off-diagonal elements are simply set to 
zero, as an ad-hoc solution. 

cov( C
cm

C
cm

var

II.C.4. Implementation: Non-reference and reference consituents 
Once the model solution is determined, the optimal complex-valued model 

parameter vector m  (44) is known. For each non-reference or reference constituent of 
index  (where ), two elements of  are the complex coefficients   and 

. These are used, by 

+
cacnc
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c
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}{}, g

−
c
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+ncm
c

var

(35), to compute the four Cartesian cosine/sine 

coefficients  C
cm

( C
cm

(64) for the constituent. Next, the associated variance-covariance matrix 
 is computed from (75); this makes use of the spectral quantities (73) 

from the weighted residuals to scale the results of the white case (70)-(72), which is in 
turn based on expressions for the complex bivariate normal statistics using the model 
equation basis function matrix and associated weight matrix (57). Random realizations, 
denoted { }, are then generated from the known  and . In the 
UTide code, the random realizations of  are generated using the Matlab Statistics 
Toolbox function mvnrnd(). By Monte Carlo uncertainty propagation through 

C
cm ( C

c
colored m

{},{Lsmi θη

var
C
cm

(9) and 
(33), random realizations of the current ellipse parameters, { , are 
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generated. Standard errors of current ellipse parameters are computed using the median-
average-deviation formulation, 

 

6745.0/]}][{}{[ smajsmaj
L LMedianLMediansmaj −=σ  
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L
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6745.0/]}][{}{[ gMediangMediang −=σ . 

(76) 

Finally, the 95% confidence intervals  are 1.96 times these standard errors, such that, 
for example, it is 95% probable that  lies between  and . 

For the white noise case the only change is to use  

CI
smajL smajL

smaj CIL −

)(cov C
c
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smaj CIL +

var (70)-(72) instead of 
(75))(covvar C

c
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II.C.5. Implementation: Inferred constituents 
 For each inferred constituent, in the Monte Carlo method, the following approach 
is used. First, the realizations  of the current ellipse parameters for 
its reference constituent, computed as just described, are used to compute realizations  

of the complex coefficients for the reference constituent, by 

}ˆ{},ˆ{},ˆ{},ˆ{ gLL smismaj θη

}ˆ̂{ vY

},ˆ̂{Lsmaj

}ˆ{},ˆ{ −+ aa (10). Next, 

realizations  of the complex coefficients for the inferred constituent are 
computed from those of the reference constituent using 

}ˆ̂{},ˆ̂{ −+ aa

},ˆ̂{},ˆ̂{ uu YX

(13), then converted to 

realizations of the cosine/sine coefficients of the inferred 

constituent by 

},ˆ̂{ vX

(35), and finally to realizations  of the current 
ellipse parameters of the inferred constituent, by 

}ˆ̂{},ˆ̂{},ˆ̂{ gLsmi θη

(9) and (33). From the realizations of the 
current ellipse parameters of the inferred constituent, the confidence intervals are 
computed as in (76). 
 
 Confidence intervals for inference constituents can also be computed when using 
the linearized method instead of Monte Carlo. For any constituent (inferred or not), the 
linearized method computes the variances of the current ellipse parameters, 

, under the presumption of zero cross-correlations and by error 

propagation rules, from the variances of the cosine/since coefficients,  
(PBL02). The latter are known for the reference constituents, as described above for the 
white or colored case, but need to be computed for the inference constituents. From 

2222 ,,, gLL smismaj σσσσ θη

2222 ,,, vvuu YXYX
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(35) 
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(77) 
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where the double-hat variables represent inferred constituents and the hat variables 
represent reference constituents, as in Section II.A. The properties of complex numbers 

 and , that 1z 2z )Im()Im()Re()Re()Re( 212121 zzzzzz −=
)Im()Re()Re() 2121 zzzz +

 and 
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(78) 

By uncertainty propagation rules, and ignoring cross-correlations just as in the linearized 
case for non-inferred constituents, it follows that  
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By similar application of uncertainty propagation to the real and imaginary parts of (32), 
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It is clear then that the known values of , together with the known 

values of , are sufficient with 
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kk ll RR , (79) and (80) to compute the needed variances of the 

inferred cosine/sine coefficients, and hence by the linearization formulae the variances 
and confidence intervals of the current ellipse parameters of the inferred constituents. 

II.C.6. One-dimensional case 
 In the case of one-dimensional raw input (real ; ) the above 
development applies unmodified except that only the first two elements of the Cartesian 
cosine/sine coefficients 

rawx

0) =

*−+ = aa

(64) are non-zero, only  is non-zero in uuD

,u YX

(65) and (66), only 
(67) and (70) need be considered, and the scaling in (75) is based solely on  from uu

cP
(73). With the additional assumption that cov( , the white noise floor result in 
the one-dimensional case corresponds to that of F77 and FH89. 

u

II.D. Constituent selection diagnostics 
 This section reviews various diagnostics that are useful to determine which 
constituents are to be included in a model solution. All diagnostics are defined and 
explained first for the case of uniformly distributed times, then comments regarding the 
case of irregular times are made. An explanation of the structure of the diagnostic table 
included by default in the UTide output, which is designed to present the diagnostics 
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collectively in a concise fashion for convenient inspection and usage, is given in Section 
III.C.1.d. 
 
 Introductory guidance on the constituent selection process can be found in a 
number of references, including FH89 and Section 5.5 of the textbook by Emery and 
Thomson (1998). In general constituent selection is an iterative process, in which initial 
iterations of the analysis include more constituents than are expected to capture 
significant energy and/or to be resolved from the other included constituents. This initial 
set of constituents tends to be created using auxiliary information such as results from 
other, prior analyses based on similar raw input from the same region. Then by inspecting 
diagnostics of the output, the decision to keep certain constituents in the model or remove 
them from it, or to infer them in a subsequent solution, can be made and the next iteration 
carried out.  
 

The decision to keep, omit, or infer (presuming sufficient needed auxiliary 
information is available) a given constituent rests on two main, related criteria: (1) the 
extent to which it is independent from the other included constituents, and (2) the extent 
to which it is significant, relative to noise and to the other included constituents. By 
iterative solutions that include different combinations of constituents, one can determine 
the extent to which omitting a constituent affects the diagnostics for the remaining 
included constituents. In general, the goal is to remove constituents that are not 
sufficiently independent and significant, which can be confirmed by verifying that 
omitting them causes sufficiently small changes to diagnostics of the remaining 
constituents. 
 

On this basis, diagnostics quantities are put in to three groups here: one group 
related to confirming independence of constituents, one group related to ascertaining 
significance of constituents, and one group to characterize reconstructed harmonic fits 
that superpose some or all of the constituents. 

II.D.1. Diagnostics related to constituent independence 

II.D.1.a. Conventional Rayleigh criterion (RR) 
In the case of raw input with uniformly distributed times the widely accepted 

approach to constituent selection is an automated decision tree method, based on the 
equilibrium tide and the conventional Rayleigh criterion, as developed by F77 and 
summarized in FH89. The conventional Rayleigh criterion (superscript R) states that two 
constituents, of frequencies 

1qω  and 
2qω , are resolvable by a record with uniformly 

distributed times if  
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where  is a minimum threshold taken to be 1 in most cases. For =1, the criterion 
is equivalent to requiring that the record length (numerator) is sufficiently long that the 
two frequencies are resolved from each other with respect to traditional spectral 
estimation. The F77 decision tree essentially compares all constituent pairs and omits any 

minR minR
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constituent that does not meet the conventional Rayleigh criterion, relative to a 
constituent that has larger equilibrium tide amplitude, for a user-specified  value. 
The decision tree can be applied for any choice of , for example a value greater than 
one in order to conservatively omit a larger number of constituents (as one example, this 
could be appropriate in the case that the condition number of the basis function matrix is 
high, as explained below). The decision tree is a standard option in UTide, as it is for 
t_tide (PBL02).  

minR

minR

II.D.1.b. Noise-modified Rayleigh criterion (RNM) 
 It is recognized that the conventional Rayleigh criterion (81) is incomplete, 
because it does not take in to account the fact that noise in a record affects its ability to 
resolve constituents from each other. As a consequence, in the case of a strongly tidal 
record, the conventional Rayleigh criterion is overly conservative, rejecting constituents 
that may be well resolved from each other. For these reasons, Munk and Hasselmann 
(1964) suggested a modified Rayleigh criterion such that the record duration required to 
resolve a pair of frequencies was scaled by the square root of the SNR. Munk and 
Hasselmann did not provide a particular expression for SNR, nor has one been commonly 
adopted in the literature, so it is suggested here to use the constituent-specific noise-
modified (superscript NM) Rayleigh criterion for constituent  relative to constituent 

, defined as 
1q

2q

 ( ) 12/)(),(),(
21qSNR2121 ≥+= q

RNM SNRqqRqqR . (82) 
The denominator is the average of the SNRs of the two constituents, where SNR for an 
individual constituent is  
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in which, for convenience, the  subscripts are dropped on the right hand side. (In the 
one-dimensional case this expression for SNR is the same as used by PBL02, but in the 
two-dimensional case it is slightly more general due to inclusion of the terms related to 
the minor axis.)  

q

 
In effect, criterion (82) states that the constituents are resolved even for record 

lengths that are not long enough for RR  to be greater than 1, as long as the SNR factor in 
(82) is greater than 1. Conversely, if the SNR factor is less than 1, the record length must 
be longer than for the conventional Rayleigh criterion, since RR  is then required to be 
greater than 1. It should be borne in mind that even the noise-modified criterion is an 
incomplete metric, since in the limit of no noise it incorrectly suggests all constituents 
will be resolvable. Nonetheless it can provide useful information, in combination with the 
conventional Rayleigh criterion, particularly for analysis of records in which the non-tidal 
signal is comparable to or larger than the tidal signal. 

II.D.1.c. Condition number (K) relative to SNR of entire model (SNRallc) 
 FH89 pointed out that by matrix theory there is an upper bound on the fractional 
error of the norm of the model parameters, 
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where  is a suitable norm, the primed variables indicate a case including random 
noise, the unprimed variables indicate a case with no random noise, and 

|||| ⋅
K  is the 

condition number (ratio of largest and smallest singular values) of the matrix B . A 
reasonable interpretation of the fraction on the RHS of (84), for  norm, is the inverse 
of the SNR for the entire model including contributions from all directly modeled 
constituents, 
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It follows that 
 1/ >KSNRallc  (86) 

is a criterion that, when met, means the upper bound of the fractional uncertainty in the 
norm of the model parameters is of order one or less. Comparison of the condition 
number and  can therefore in some cases be a useful diagnostic of whether or not 
the constituents are, collectively, well resolved by the model; in a model that includes 
constituents with small differences in frequency, the condition number will be higher, so 
in order to resolve the constituents well by this criterion,  must be high enough to 
exceed the condition number.  

allcSNR

allcSNR

 
By this line of reasoning an additional criterion for whether the constituents are 

independent from each other, collectively, could be the requirement that  is at 
least as high as 

allcSNR
K . However, in practice there is a limit to the usefulness of this approach 

because (a) (84) gives an upper bound only and hence the model parameter uncertainties 
may be sufficiently small even when  is less than K; and, of somewhat less 
importance, (b) 

allcSNR
2L(86) is based on the  norm but the hybrid  norm applies in the 

case of the IRLS solution. Furthermore, it is clear that because both  and 

21 / LL
allcSNR K  are 

defined using the entire model, as opposed to a specific constituent pair, comparing them 
can provide guidance about the model as a whole (including its mean and, if included, 
trend), but does not provide information relevant to any specific constituent or pair of 
constituents. 

II.D.1.d. Maximum correlation (Corrmax) between model parameters  
 A related means by which to gauge the extent to which a pair of constituents is 
independent is to use the cross-covariances among their model parameters. High cross-
covariance between model parameters of a pair of constituents indicates they that are less 
independent, so the less energetic of the pair should be considered for removal from the 
model, or for inclusion by inference if possible. Here, a new diagnostic for cross-
covariances is presented and expressed using elements of the confidence interval 
development of Section II.C.  
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The “maximum correlation” diagnostic for constituents with indices  and  is 
the maximum magnitude of the 16 correlation coefficients between the elements of their 
Cartesian model parameter vectors  and 
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where the correlations are defined in the standard way, for example, 
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The standard deviations in the denominator of (88) are calculated using the 

diagonal elements of , expressions for which are given in )(covvar C
c

white m (70)-(72). The 
covariances in the numerator of (88) are the elements of (65) when generalized to a 
constituent pair, 
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where the 2 x 2  submatrices are  D
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The expressions in (57) are generalized to their two-constituent forms, 
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It follows from the definitions (34) and (35) with relations of the same form as (60)-(62), 
and omitting the  superscripts from G and H for clarity, that the terms of  are 21cc 21cc
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the terms of are 21cc
uvD

2/)]Im()Im()Im()Im([),cov( 2221121121
HHHHXX v

c
u
c −−−−=  

2/)]Re()Re()Re()[Re(),cov( 2221121121
GGGGYX v

c
u
c −+−=  

2/)]Re()Re()Re()Re([),cov( 2221121121
HHHHXY v

c
u

c ++−−=  
(93) 

 34



2/)]Im()Im()Im()Im([),cov( 2221121121
GGGGYY v

c
u

c −++−= ; 

the terms of  are 21cc
vuD

2/)]Im()Im()Im()[Im(),cov( 2221121121
GGGGXX u

c
v
c +++=  

2/)]Re()Re()Re()Re([),cov( 2221121121
HHHHYX u

c
v
c +−+−=  

2/)]Re()Re()Re()[Re(),cov( 2221121121
GGGGXY v

c
u

c −−+=  

2/)]Im()Im()Im()[Im(),cov( 2221121121
HHHHYY v

c
u

c +−−= ; 

(94) 

and the terms of  are 21cc
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(The case , not considered in this section, would yield the three groups of 
expressions 

21 cc =
(70)-(72).) 

 
 In the case of one-dimensional raw input, the Cartesian model parameter vectors 

 have only two elements each, so  is the maximum among 4 (not 16) 
correlations. The above expressions are unchanged except for the fact that only the  
portions (upper left quadrants) of the matrices are nonzero and need be considered. 

C
c

C
c mm

21
, maxcorr

uuD

 
The  diagnostic is analogous to the correlation diagnostic for one-

dimensional raw input based on the singular value decomposition, developed by 
Cherniawsky et al (2001) and used in FCB09. In the analysis of FCB09, correlations up 
to about 0.2 were considered acceptable. However, experimentation is required in order 
to determine acceptable levels of  for each individual analysis. 

maxcorr

maxcorr
 
In the UTide constituent selection diagnostic table (described in Section III.C.1.d 

below), values are computed only for adjacent pairs of constituents in the model, 
that is, those pairs that have frequencies nearer to each other than to any other 
constituents (excluding inferred constituents). While this is not as complete as computing 
and examining  values for every pair of constituents, it is a practical approach 
based on the expectation that constituent pairs with adjacent frequencies are typically 
more likely to lack independence. 

maxcorr

maxcorr

II.D.2. Diagnostics related to constituent significance 

II.D.2.a. Signal to noise ratio (SNR) 
Constituents  for a given solution are considered to be significant with 

respect to the noise in the raw input if their  
allcnq ...1=

qSNR (83) obeys 
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 minSNRSNRq ≥ , (96) 
where  is a minimum threshold value. Common practice takes  to be 1 or 
2, but in certain situations other values may be appropriate. For example, a higher value 
might be used in order to conservatively neglect marginally significant constituents if the 
estimates of the standard deviations of the model parameters, on which the SNR values 
are founded 

minSNR minSNR

(83), are thought to be biased low. 

II.D.2.b. Percent energy (PE) 
 The model solution  modx (42) is a reconstructed harmonic fit that superposes all 
the constituents. Independently of their significance with respect to the SNR threshold, 
the relative importance of a constituent can be gauged by the percent energy (Codiga and 
Rear 2004) it contributes to the model solution. For constituent , the percent energy is q

 ∑
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where  
 )( 22

ηsmismajq LLE += , (98) 
the  subscripts have been dropped on the right hand side of q (98), and the summed  
values equal 100. In the two-dimensional case of horizontal velocity components, is 
proportional to the kinetic energy; in the one-dimensional case of sea level it is a gauge of 
potential energy. It is useful to rank the constituents by their percent energy so that the 
importance of the constituents in an amplitude-weighted sense is clear. This ranking 
usually parallels the SNR ranking but it can be less sensitive to the confidence interval 
calculation method, and in certain cases provides important complementary information 
to SNR. 

qE
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II.D.3. Diagnostics characterizing reconstructed fits (PTVall, PTVsnrc) 
A diagnostic of the model solution is its percent tidal variance, 
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where  and  (each in units of squared raw input units) are the tidal variance, 
after removal of the mean and trend, of the (all-constituent) model solution and the raw 
input, respectively. 

allcTV rawTV

 
 Reconstructed fits other than the model solution can be calculated based on 
inclusion of a subset of the constituents. Denote by  the subset of  
constituents (among non-reference, reference, and inferred constituents) that are chosen, 
based on some criteria, to be included in a reconstructed fit. Following model equation 
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(2), the reconstructed fit computed using that subset of constituents is  
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Substituting this in (99) for  yields the percent tidal variance of the reconstructed fit,  modx
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based on the ratio of the tidal variance of the reconstructed fit to that of the raw input. A 
straightforward example is the reconstructed fit using only the constituents that meet the 
SNR criterion (“snrc”) for significance (96), denoted by indices . The percent tidal 
variance of the corresponding reconstructed fit is 

snrcq
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II.D.4. Considerations for irregularly distributed times  
When the times of the raw input are distributed irregularly, some of the 

underlying assumptions behind the above diagnostics are violated, making proper 
constituent selection a major challenge. Irregular times can be viewed loosely as if certain 
parts of the record have more highly concentrated temporal sampling and could resolve a 
higher number of constituents, whereas the opposite is true for other parts of the record. It 
follows that to be conservative one should select constituents based on the limitations of 
the portions of the record where temporal sampling is most sparse. However, there are no 
guidelines or accepted practices for how to carry out this goal on the basis of knowledge 
about the distribution of irregular times. 

 
Even though strictly speaking the underlying assumptions are violated, for the 

case of irregularly distributed times it is nonetheless straightforward to follow the above 
approach, without modification, for both the implementation of the automated decision 
tree and the computation of all of the above diagnostics. As a result, although it is 
certainly not rigorously justified by the underlying statistics, it is straightforward to 
calculate and inspect all the same diagnostics in the case of irregularly distributed times 
as are used for regularly distributed times. This approach is at least a starting point, in the 
absence of suitable diagnostics that are well-defined in terms of the characteristics of the 
distribution of the irregular times.  

 
It will of course be most justified to make use of diagnostics so calculated in cases 

when the irregularity in the distribution of the times is modest. An example of modest 
irregularity is a distribution of times that deviates from an equispaced time series only by 
small random deviations, as opposed to including numerous gaps that are long, in the 
sense that their duration spans at least several samples in a comparable regular time 
series. 

 
When the times are irregular a crude but practical approach to being conservative, 

in the sense of omitting constituents that might not be resolved from each other, is to use 
the same diagnostics but judge them in relation to different threshold values. For 
example, if the Rayleigh criteria ((81),(82)) are used with =1 for a uniformly minR
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sampled record, then for an irregularly sampled record an value higher than 1 can be 
used, in order to be more stringent in omitting constituents.  

minR

 
There is no accepted practice for determining the multiple by which to increase 

 based on the arbitrary, but known, irregular distribution of the times. As a starting 
point, consider the comparison between a record with uniform sampling of time 
difference  between samples, and a modestly irregular record with time differences 
between samples that are variable but Gaussian with mean 

minR

tΔ
tΔ  and standard deviation tΔσ  

less than the mean. A reasonable choice for the appropriate ratio by which to increase 
is minR

 )/(/ minmin t
irregular ttRR Δ−ΔΔ= ασ  (103) 

where α  is a constant, nominally 1, that can be increased (as long as the denominator 
remains positive) in order to implement more conservative constituent rejection. This 
approach is equivalent to decreasing the numerator in the Rayleigh criterion (81), from 
the length of record or  in the uniformly distributed times case, to tnt Δ− )1(

))( tΔ1( ttn Δ−− ασ . Most real-world raw inputs with irregular temporal sampling are 
likely to have non-Gaussian distributions of the time differences, in which case some 
improved robustness should follow from using the median (instead of the mean) for tΔ  
and the median-absolute-deviation (instead of the standard deviation) for tΔσ .  
 

However, the deviation of the irregular sampling distribution from Gaussian is 
commonly very severe, with numerous long gaps, such that in general (103) may not be 
applicable and it is expected that some empirical experimentation will be necessary to 
arrive at an acceptable value of . irregularRmin
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III. The UTide Matlab functions 
UTide consists of a pair of Matlab functions designed to be easy to understand 

and implement: ut_solv() to carry out the analysis, the results of which are passed to 
ut_reconstr() for reconstructing a hind-cast or forecast/prediction, or “fit”, as needed.  

III.A. Obtaining and using UTide 
There are three UTide files: ut_solv.m, ut_reconstr.m, and ut_constants.mat. The 

current version can be downloaded in a compressed bundle, together with this report, at 
ftp://www.po.gso.uri.edu/pub/downloads/codiga/utide/UTideCurrentVersion.zip; the 
version history, and the bundle file for older versions, will be available in that same 
folder. Uncompress the zipfile contents to a single folder/directory and make sure it is on 
the Matlab path. No other formal installation is needed.  
 

UTide makes use of functions from both the Signal Processing Toolbox 
(pwelch(), cpsd(), hanning()) and the Statistics Toolbox (robustfit(), mvnrnd()). Thus if 
either of these toolboxes are not available, executing UTide in its default configuration 
will result in errors. If the Signal Processing Toolbox is not available, the colored method 
for confidence intervals will not be possible, so to avoid such errors UTide must be run 
using the ‘White’ option flag (explained below). Similarly, if the Statistics Toolbox is not 
available, the IRLS solution method and the Monte Carlo confidence interval approach 
will not be possible, so to avoid such errors UTide must be run using both the ‘OLS’ and 
‘LinCI’ option flags (explained below). 

 
 As noted by LJ09, calls to robustfit() to carry out the IRLS solution commonly 
result in a warning or error related to reaching the interation limit. This can be remedied 
by editing the line iterlim = 50; in the file statrobustfit.m, found in the 
MATLABROOT\toolbox\stats\private folder, to replace 50 by a sufficiently larger 
maximum number of iterations, for example 500. Other than permitting a higher number 
of iterations, this has no effect on the functionality of robustfit() or any other aspects of 
Matlab. In general, increasing the tuning parameter can be a remedy, in cases for which 
the iteration limit is reached. When the iteration limit is reached, the results for current 
ellipse parameters (amplitude/phase parameters in the 1D case), means, slopes (if trend 
included), and confidence intervals are set to NaN. 

III.B. Quick start suggestions 
 The following steps outline the most efficient way to get started quickly with an 
initial computation (for analysis of a single record) using the default settings of UTide. 
First, read the opening portion of Section III.C, which briefly summarizes the syntax. 
Next, read section III.C.1.a, where the formats of the input parameters to ut_solv() are 
explained, and manipulate the raw values you wish to analyze in order to create t_raw, 
u_raw, v_raw, lat, and cnstit in the needed formats (for the latter, a typical initial choice 
is ‘auto’, which invokes the F77 decision tree to carry out constituent selection). Then, 
pass them in to ut_solv() to generate the structure coef. If the computational burden is too 
much for the available resources, try again but also pass in the ‘OLS’, ‘white’, and 
‘LinCI’ flags, after the cnstit input, as explained in Section III.F. By default the 
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diagnostics table coef.diagn.table (explained in Section III.C.1.d) will be displayed at 
runtime, and can be inspected in order to iterate towards a more refined constituent 
selection for a subsequent call to ut_solv(). Read Section III.C.1.b to understand the 
contents and formats of the field in coef, which include all analysis results and are 
available for manipulation in further custom analysis or plotting (of the constituent 
statistics, coefficients and confidence intervals, current ellipses, etc). Finally, if 
reconstructing a hind-cast or forecast/prediction fit (superposed harmonics) using the 
resulting coefficients is desired, construct a vector t_fit (in the same format as t_raw) of 
times and pass them in to ut_reconstr(), with specification of the subset of constituents to 
include (default includes constituents with SNR≥2), as explained in Section III.C.2. To 
treat a group of records, see Section III.D. 

III.C. Functionality and syntax and for a single record 
Syntax for two-dimensional raw input, such as velocities, is 
 

 coef = ut_solv ( t_raw, u_raw, v_raw, lat, cnstit , {options} ); 
 [ u_fit, v_fit ] = ut_reconstr ( t_fit, coef , {options} ); 
 
and syntax for one-dimensional raw input, such as sea level, is 
 
 coef = ut_solv ( t_raw, sl_raw, [], lat, cnstit , {options} ); 
 [ sl_fit, ~ ] = ut_reconstr ( t_fit, coef , {options} ); 
 
for which a brief overview of the various variables/parameters is as follows: 

• coef is the output structure generated by ut_solv() and accepted by ut_reconstr(); 
• the raw input records have times t_raw, current components u_raw/v_raw or sea 

level values sl_raw, and latitude lat; 
• cnstit specifies the constituents to be included in the model; 
• t_fit contains the arbitrary times at which the reconstructed output (u_fit/v_fit or 

sl_fit) is computed; and 
• {options} represents optional inputs, as explained in more detail below. 

More detailed explanations of variables that must be passed in to ut_solv() are given in 
Section III.C.1.a; a detailed explanation of the contents of the output from ut_solv(), the 
structure coef,  is given in Section III.C.1.b; explanations of the default configuration and 
option flags for ut_solv() are given in Section III.C.1.d. Information regarding the inputs 
and outputs of ut_reconstr(), and its default configuration and option flags, is given in 
Section III.C.2. 

III.C.1. Solving for coefficients with ut_solv() 

III.C.1.a. Input parameter descriptions 
The times are in a real-valued column vector t_raw that 

• contains Matlab “datenum” values for the sampled times in coordinated universal 
time UTC (Greenwich mean time, GMT), with units of days. For the unfamiliar, 
the definition and characteristics of “datenum” values are explained in the Matlab 
documentation; see the help descriptions for functions datenum(), datevec(), and 
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datestr(). For example, to generate an N-day time vector with hourly resolution, 
1:(1/24):N will not suffice; instead use, e.g., for a start time of 8:15AM on Nov. 
1, 2001, datenum(2001,11,1,8,15,0)+(1:(1/24):N); 

• can have NaN values, but they will be removed during analysis, along with the 
corresponding (NaN or non-NaN) associated u_raw/v_raw or sl_raw values; 

• contains values that can be either regularly/uniformly distributed (“equispaced”) 
or irregularly distributed; 

• is considered equispaced if (after NaNs are removed) the Matlab expression 
var(unique(diff(t_raw)))<eps is true [where var(), unique(), diff() , and eps() are 
built-in functions], in which case FFT methods ( pwelch(), cpsd() ) are used for 
the periodogram of the residual for colored confidence intervals; and 

• is considered irregularly distributed if (after NaNs are removed) 
var(unique(diff(t_raw)))≥eps, in which case, the Lomb-Scargle periodogram of 
the residual is used for colored confidence intervals. 

Raw input vectors u_raw and v_raw, or sl_raw  
• are real-valued column vectors of the same size as t_raw; and 
• are permitted to include NaNs, in which case if the times are equispaced (see 

above) the NaNs will be filled by linear interpolation prior to FFT spectral 
analysis. 

The scalar input lat is  
• the latitude (in decimal degrees, positive North and negative South); 
• a required input, because nodal/satellite corrections are implemented by default; 

and 
• not used if nodal/satellite corrections are omitted (‘NodsatNone’ option). 

The input cnstit determines the constituents included in the model and is one of the 
following: 

• the string ‘auto’ (not case-sensitive)  
o the F77 automated decision tree (with default value minR  (81) of 1, unless 

a different value is specified with the ‘Rmin’ option) is implemented; 
o if inference/reference constituents are specified together with this option, 

the inference/reference constituents are included in the model whether or 
not they are selected by the decision tree; a constituent selected by the 
decision tree will be removed from the non-reference group of constituents 
if it is designated as a reference constituent or an inferred constituent. 

• a cell array of 4-character strings (not case-sensitive) 
o each string contains the name of a non-reference constituent to be 

included, including trailing blanks if needed to fill out 4 characters; 
o the constituents available are those (including shallow-water constituents) 

in the const.name variable in the “ut_constants.mat” file, for example ‘M2  
’, ‘MSF ’, etc.  

III.C.1.b. Output structure coef 
 The main output of the call to ut_solv() is a single structure, coef. It consists of 
various scalar, vector, and string array fields, which are described here. 
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 The sizes of the cell array and numeric fields and subfields of coef  are either 1x1 
or x1. For fields with size x1, there is one value for each of the constituents, and 
they are ordered such that the results for a given constituent are in the same element of 
each such field. By default the elements are ordered by decreasing percent energy 

allcn

q

allcn

PE (97). Using the ‘OrderCnstit’ option flag they can instead be ordered by decreasing 
SNR, increasing frequency, or in a user-specified sequence (the last option is possible as 
long as the automatic decision tree is not used for constituent selection, that is, cnstit is 
not ‘auto’). 
 
 There are three main groups of results in coef: primary results, auxiliary results, 
and diagnostic results. The primary results are the x1 cell array  allcn

• coef.name, an array of 4-character constituent names, 
the following real-valued x1 vectors, allcn

• in the two-dimensional case ((9),(76)),  
o coef.Lsmaj, the current ellipse major axis length (units of u_raw/v_raw)  
o coef.Lsmaj_ci, the 95% confidence interval for coef.Lsmaj, 
o coef.Lsmin, the current ellipse minor axis length, 
o coef.Lsmin_ci, the 95% confidence interval for coef.Lsmin, 
o coef.theta, the current ellipse orientation angle (degrees)  
o coef.theta_ci, the 95% confidence interval for coef.theta,  
o coef.g, the Greenwich phase lag (degrees) of the vector velocity, 
o coef.g_ci, the 95% confidence interval for coef.g, 

• in the one-dimensional case ((20),(76)) 
o coef.A, the amplitude (units of sl_raw)  
o coef.A_ci, the 95% confidence interval for coef.A 
o coef.g, the Greenwich phase lag (degrees), 
o coef.g_ci, the 95% confidence interval for coef.g, 

and the following real-valued scalars, 
• in the two-dimensional case, 

o coef.umean and coef.vmean, the mean values vu ,  (2) (u_raw/v_raw 
units) for the u/v components, 

o coef.uslope and coef.vslope, the trend slope vu &&,  (2) (u_raw/v_raw units 
per day) for the u/v components (omitted if the trend is not included in the 
model), 

• in the one-dimensional case, 
o coef.mean, the mean value (sl_raw units), 
o coef.slope, the trend slope (sl_raw units per day), omitted if the trend is 

not included in the model. 
The field coef.results is a character array that presents all the above fields in an easy to 
read format and is displayed during runtime by default. If the IRLS solution method is 
used and it does not converge, a warning is given in coef.results, and the values of the 
above fields are set to NaN. 
 

The auxiliary results are included as fields of coef.aux and consist of  
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• coef.aux.rundescr, a cell string array with a descriptive explanation of the run,  
• coef.aux.opt, a series of fields containing the option settings and input 

parameters, 
the x1 vectors allcn

• coef.aux.frq, the frequencies of the constituents (cycles per hour), 
• coef.aux.lind, the list indices (used by ut_reconstr()) of the constituents as 

referenced in the file ut_constants.mat,  
and the scalars 

• coef.aux.lat, the latitude,  
• coef.aux.reftime, the reference time (datenum UTC/GMT as for t_raw). 

 
The diagnostic results are included in coef.diagn, which is created unless the 

‘NoDiagn’ option is selected, and consists of the following x1 fields, each with the 
same (default decreasing 

allcn

qPE (97); otherwise can be specified, using the ‘OrderCnstit’ 
option, to be decreasing SNR, increasing frequency, or user-specified) element order:  

• coef.diagn.name, the four-character constituent names, in order of decreasing 
qPE  (identical to coef.name; except when the ‘OrderCnstit’ option is used, in 

which case it is the same list of constituents but ordered differently), 
• coef.diagn.PE, the percent energy (97), 
• coef.diagn.SNR, the signal to noise ratio (83), 
• coef.diagn.lo.name, the name of the constituent with the nearest lower frequency 

(NaN if no other constituent has a lower frequency), 
• coef.diagn.lo.RR, the conventional Rayleigh criterion ratio RR  (81) relative to the 

constituent with the nearest lower frequency (NaN if no other constituent has a 
lower frequency), 

• coef.diagn.lo.RNM, the noise-modified Rayleigh criterion ratio NMR  (82) relative 
to the constituent with the nearest lower frequency (NaN if no other constituent 
has a lower frequency), 

• coef.diagn.lo.CorMx, the maximum model parameter correlation maxcorr  (87) 
relative to the constituent with the nearest lower frequency (NaN if no other 
constituent has a lower frequency), 

• coef.diagn.hi.name, coef.diagn.hi.RR, coef.diagn.hi.RNM, and 
coef.diagn.hi.CorMx, which are the same as the corresponding above four fields, 
but for the nearest higher frequency, 

and the following scalars: 
• coef.diagn.K, the condition number of the basis function matrix (84), 
• coef.diagn.SNRallc, the all-constituent signal to noise ratio (85), 
• coef.diagn.TVraw, the tidal variance (99) of the raw inputs, with units 

u_raw/v_raw units squared (two-dimensional case) or sl_raw units squared (one-
dimensional case), 

• coef.diagn.TVallc, the tidal variance of the model solution (all constituents 
superposed) (99), with units u_raw/v_raw units squared (two-dimensional case) 
or sl_raw units squared (one-dimensional case),  

 43



• coef.diagn.TVsnrc, the tidal variance of the reconstructed fit using only 
constituents that meet the SNR criterion (102), 

• coef.diagn.PTVallc, the percent tidal variance captured by the (all-constituent) 
model solution (99), and 

• coef.diagn.PTVsnrc, the percent tidal variance of the reconstructed fit using only 
constituents that meet the SNR criterion (102). 

The main diagnostic results, in addition to appearing in the above fields, are summarized 
in the constituent selection diagnostics table coef.diagn.table. This is a table (described in 
detail in Section III.1.C.d) that is formatted for easy viewing within Matlab to aid in the 
constituent selection process. Unlike the above x1 fields of coef.diagn, for which the 
ordering can be changed using the ‘OrderCnstit’ option flag, the rows in coef.diagn.table 
are always ordered by decreasing .  

allcn

qPE
 
Runtime display. All results of a call to ut_solv() are stored in coef. For convenience, by 
default when its execution is complete ut_solv() outputs a three-part runtime display (a 
key subset of the contents of coef). The runtime display consists of (a) the coefficients 
and confidence intervals, coef.results; (b) the run description meta-information 
coef.aux.rundescr; and (c) the constituent selection diagnostics table coef.diagn.table, if 
it has been generated (unless the ‘NoDiagn’ option has been selected). The runtime 
display can be omitted entirely, or can include subsets of the three components, as 
controlled by the opt.RunTimeDisp option to ut_solv() as described below. 

III.C.1.c. Defaults and options 
The default configuration for a call to the function ut_solv(), which is 

implemented when no {options} parameters are passed in, is as follows. 
• The linear (secular, non-tidal) trend (2) is included in the model .  
• No pre-filtering correction is made ( 1=qP , in (5)). 
• Nodal/satellite corrections with exact times (4) are implemented. 
• Greenwich phase lags are computed by use of the astronomical argument with 

exact times (4). 
• The model includes no inferred constituents. 
• If cnstit is ‘auto’ then the automated decision tree constituent selection method is 

applied with minR =1 (81). 
• The solution method is robust IRLS with the Cauchy weight function and tuning 

parameter 2.385, which is the Matlab default value (TunRdn = 1).  
• The Monte Carlo uncertainty propagation method (Section II.C) is used, with 200 

realizations (Nrlzn=200), to determine confidence intervals of the current ellipse 
parameters from those of the model parameters. 

• Confidence intervals are computed based on the (colored) spectra computed from 
the actual residuals (Section II.C.3). If the input times are uniformly distributed, 
the spectra are computed using FFT methods, otherwise they are computed using 
the Lomb-Scargle periodogram with frequency oversampling factor 1 
(LSFrqOSmp=1). 
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• Computation of the constituent selection diagnostics table (Section III.C.1.d) is 
carried out, using 2min =SNR . 

• The order of constituents in the output variables and diagnostics table is based on 
decreasing percent energy qPE (97). 

• All three components of the runtime display are presented. 
 

To change these defaults, the following option flags can be passed in. Option 
flags must be passed in after the cnstit argument. The option flags are not case-sensitive, 
but they cannot be abbreviated. For some flags, accompanying variables are passed in, as 
noted in boldface italics. For those options appearing in a list headed by “One of the 
following”, an error will result if more than one on the list is specified. 

• ‘NoTrend’  
o This will omit the linear/secular trend term from the model. 

• ‘PreFilt’, PreFilt 
o This will implement the correction to account for pre-filtering that was 

applied to the raw inputs before the analysis; PreFilt is a structure that 
specifies the pre-filter transfer function (not the inverse transfer function, 
as is input to t_tide, PBL02) as  

 PreFilt.P, an frqn x1  vector with real-valued P  (4) for the one 
dimensional case, and complex iPP +  for the two-dimensional 
case, where frqn  is an arbitrary number of frequencies by which 
the filter shape is to be specified 

 PreFilt.frq, an frqn x1 vector of the frequencies (in cycles per hour) 
of the PreFilt.P values, and 

 PreFilt.rng, a two-value vector with the range (minimum and 
maximum) of acceptable P  magnitudes, for example [0.01 100]; 
values outside this range will be set to 1.  

• One of the following: 
o ‘NodsatLinT’ 

 This will cause nodal/satellite corrections to use linearized times, 
instead of the default exact formulation. 

o ‘NodsatNone’ 
 This will cause nodal/satellite corrections to be omitted, instead of 

the default exact formulation. 
• One of the following: 

o ‘GwchLinT’ 
 This will cause the astronomical argument in the Greenwich phase 

lag calculation to use linearized times, instead of the default exact 
formulation. 

o ‘GwchNone’ 
 This will omit the astronomical argument, such that the reported 

phase lags are “raw” (not Greenwich-referenced) relative to the 
reference time reft . 

• ‘Infer’, Infer 

 45



o This causes a total of In  inference constituents, and Rn  reference 
constituents ( IR nn ≤≤1 ), to be included in the model (11). If any of the 
specified reference or inference constituents are in the group of non-
reference constituents, as determined by the automatic decision tree or as 
specified manually by the cnstit input, they are removed from the group of 
non-reference constituents. Infer is a structure with elements 

 Infer.infnam, a cell-array of In  4-character names of the 
constituents to be inferred, 

 Infer.refnam, a cell-array of In 4-character names of the 
corresponding reference constituents, not all of which need be 
unique from each other (unless ‘InferAprx’ is chosen, see below) 
because multiple constituents can be inferred from a single 
reference constituent, 

 Infer.amprat, which is 
• for the two-dimensional case, a In2 x1 vector of real-valued 

unitless amplitude ratios, −+ rr ,  (12) , with +r  values in the 
first In  elements and −r  values in the second In  elements 

• for the one-dimensional case, an In x1 vector of real-valued 
unitless amplitude ratios ηr  (21), 

 Infer.phsoff, which is 
• for the two-dimensional case, a In2 x1 array of real-valued 

phase offsets (in degrees), −+ ςς ,  (12), with +ς  values in 
the first In  elements and −ς  values in the second In  
elements 

• for the one-dimensional case, an In x1 vector of real-valued 
phase offsets ης  (21). 

• ‘InferAprx’ 
o This causes the inference calculation to follow the approximate method 

(Section II.A.4.c). Ignored unless ‘Infer’ also selected. With this option 
selected, an error will result if the constituents in infer.refnam are not 
unique, i.e. when IR nn <  (as when inferring multiple constituents from a 
single reference constituent, not possible for the approximate method). 

• ‘Rmin’, Rmin 
o This will specify the minR (81) value (positive) to be used in automated 

constituent selection. The default is minR =1. Ignored if cnstit is not ‘auto’. 
• One of the following: 

o ‘OLS’ 
 This will change the solution method to the Matlab “backslash” 

operator, to implement ordinary least squares analysis instead of 
the default IRLS. 

o ‘Andrews’, ‘Bisquare’, ‘Fair’, ‘Huber’, ‘Logistic’, ‘Talwar’, OR ‘Welsch’ 
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 This will cause the robust IRLS method to be implemented by the 
robustfit() function using the named weight function (instead of 
the default Cauchy weight function), and using a tuning parameter 
that is the Matlab default value for that weight function divided by 
the tuning factor reduction parameter TunRdn. 

• ‘TunRdn’, TunRdn 
o To reduce the IRLS tuning parameter relative to the Matlab default value, 

for the given weight function (default Cauchy; otherwise specified by an 
option input), by the tuning parameter reduction factor TunRdn (the 
tuning parameter used is the default tuning parameter divided by 
TunRdn.) The default is TunRdn = 1. Ignored if using ‘OLS’. 

•  ‘LinCI’ 
o This causes the confidence intervals on the current ellipse parameters to be 

computed from the uncertainties in the model parameters by the linearized 
method, instead of the Monte Carlo method. 

• ‘White’ 
o This causes the white noise floor assumption to be implemented in the 

confidence interval calculation such that spectra of the residual are 
presumed white instead of calculated from the actual colored residual. 

•  ‘Nrlzn’, Nrlzn 
o This will cause the Monte Carlo calculations to use Nrlzn realizations 

instead of the default, which is 200. Ignored if ‘LinCI’ flag is passed in. 
• ‘LSFrqOSmp’, LSFrqOSmp 

o This will cause the Lomb-Scargle periodogram calculation to use 
frequency oversampling factor of LSFrqOSmp instead of the default, 
which is 1. If LSFrqOSmp is not an integer it is rounded. Ignored if raw 
input times are uniformly distributed or if the ‘White’ flag is passed in. 

• ‘DiagnMinSNR’, MinSNR 
o This will specify the minSNR  value used in (i) calculation of snrcTV  and 

snrcPTV , and (ii) in the constituents included in the reconstructed fits of 
the diagnostic figures. Default value is 2. 

• One of the following: 
o  ‘NoDiagn’ 

 Skip both the summary diagnostics table and the diagnostic 
figures. 

o ‘DiagnPlots’ 
 Generate the diagnostic figures (described in Section III.C.1.d) in 

addition to the diagnostics table. 
•  ‘OrderCnstit’, CnstitSeq 

o This will override the default qPE -ranked ordering by which the 
constituent-based parameters in the coef output structure (explained 
below, e.g., coef.name, coef.g, etc; not the diagnostics in coef.diagn) are 
listed. The parameter CnstitSeq is one of: 

 ‘snr’, to order by decreasing qSNR , OR 
 ‘frq’, to order by increasing frequency, OR 
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 (allowed only in the case that cnstit is not ‘auto’) a cell array of 4-
character strings that, if it differs from cnstit, only differs in the 
order of its rows. 

o The row order of the fields in coef.diagn, and the rows in the summary 
diagnostics table, are always by decreasing qPE  and are not affected by 
the ‘OrderCnstit’ option. 

• ‘RunTimeDisp’, RunTimeDisp 
o To suppress all three components of the default runtime display 

information (described at the end of section III.C.1.b.) use RunTimeDisp 
= ‘nnn’ (not case sensitive). The default is ‘yyy’. To suppress one or two 
of the components, replace y by n in the three-letter string; for example to 
show only the coefficients and confidence intervals (first component) use 
‘ynn’, to show only the constituent selection diagnostic table (third 
component) use ‘nny’, etc. If the ‘NoDiagn’ option is selected then no 
constituent selection diagnostic table will be computed nor shown at 
runtime, regardless of the third character in RunTimeDisp. 

III.C.1.d. Summary diagnostics table and diagnostic plots 
 Based on explanation of diagnostics in Section II.D above, by default UTide 
generates a summary table of diagnostics (coef.diagn.table) that provides information 
useful in the constituent selection process and is a character array that can be viewed 
easily within Matlab after execution of ut_solv(). The table is computed for uniformly or 
irregularly distributed times, as explained above.  Its computation can be skipped using 
the ‘NoDiagn’ option. 
 

The heading lines of the table show quantities not specific to individual 
constituents or constituent pairs. The first heading line shows the user-specified minR (81) 
and minSNR (96) values. The second heading line shows the basis matrix condition 
number K (84) and the all-constituent allcSNR

snrcPTV

(85). The third heading line shows the tidal 
variances (a)  allcTV (99) of the model solution, (b)  snrcTV (102) of the reconstructed fit 
using constituents meeting the SNR criterion (96), and (c)  rawTV (99) of the raw input. 
The fourth and final heading line shows the percent tidal variances (a)  allcPTV (99) of the 
all-constituent model solution, and (b)  (102) of the reconstructed fit using 
constituents meeting the SNR criterion.  

 
Within the table there is one row for each constituent, of frequency qω , and the 

rows are ordered by decreasing percent energy  qPE

qPE
(97) values. The first three columns 

of the table are the name of the constituent, the  value, and the constituent-specific 

qSNR (83); at the far left an asterisk appears adjacent to the constituent name if it meets 
the SNR criterion (96).  Next there is a group of columns presenting diagnostics related to 
the constituent with the next-lower frequency compared to qω ; finally, there is a group of 
columns with the same diagnostics related to the constituent with the next-higher 
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frequency compared to qω . In these latter two groups, the columns include the name of 

the neighboring constituent followed by RR (81), NMR (82), and maxcorr

R

(87), each 
computed for the respective constituent pair. 

 
All types of constituents—non-reference, reference, and inferred—are listed 

together in the table. Diagnostics based on constituent pairs ( R , NMR , and ) are 
computed only between non-reference and reference constituents, with pairs chosen 
based on frequencies that are nearest to each other, regardless of whether an inferred 
constituent has frequency between them. If the solution included inference of one or more 
constituents, a list of them is shown at the bottom of the table with their respective 
reference constituents. 

maxcorr

  
The layout of the table columns is such that the importance of the diagnostics 

within the columns is generally highest in the columns toward the left. That is, the  

and  diagnostics are likely to be of the most use, with the 
qPE

qSNR RR NMR, , and 
values also providing relevant information, but each of increasingly lower 

importance for most typical situations.  
maxcorr

 
The rank-order of the constituents in the table makes it visually apparent 

which among them have captured the most energy. The SNR values of the higher-ranked 
constituents typically decrease in a similar manner to , but for the lower-  
constituents it is useful to inspect the SNR values carefully, and if they are too low, 
consider omitting or inferring the associated constituents.  

qPE

qPE qPE

 
The table is designed so that it is also easy to scan for and identify any RR  and 

NMR  values that are lower than 1. Such values indicate violations of the Rayleigh criteria 
and suggest that consideration should be given to removing these constituents from the 
model or inferring them. When the decision tree method of F77 has been used, the RR  
values will all be greater than 1, but the NMR  values will provide useful additional 
information. Similarly, the  values can be scanned easily for the relatively higher 
values, which will help identify potential pairs of constituents that may not be sufficiently 
independent from each other to both be included in the model unless one is inferred. 

maxcorr

 
 Through use of the ‘DiagnPlots’ option, two diagnostic figures (in addition to the 
diagnostics table) can be generated by ut_solv(). Each figure is generated with a call to 
the built-in function figure() without application of any rescaling, so the user will need to 
manually maximize them (e.g. by mouse) to make the plots more legible on the screen. 
The two figure windows will typically overlie each other when initially created. 
 
 The first figure has four frames in the two-dimensional case and three frames in 
the one-dimensional case. The top frame shows the text field coef.diagn.rundescr, to 
provide a descriptive summary of the run characteristics. The second and third frames, in 
the two-dimensional case, show time series for the u and v components respectively: the 
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raw input, the reconstructed fit using constituents that meet the SNR criterion, and the 
residual; in the one-dimensional case there is one such frame. The bottom frame is a 
semi-logarithmic plot that shows, in the two-dimensional case, a vertical bar extending to 

for each constituent in order of increasing frequency, colored red if the SNR 
criterion is met and blue if not, along with a green dotted line showing 

 to indicate the height required for each bar to meet the SNR 

criterion. In the one-dimensional case the vertical bar heights are  and the green dotted 
line is . 

22 ηsmismaj LL +

22 )(
smismaj LL +

η
σσ

2 SNRA ⋅σ

minSNR⋅

min
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 The second figure has four frames in the two-dimensional case and two frames in 
the one-dimensional case. It shows information about only the constituents that meet the 
SNR criterion, and they are ordered by decreasing  from left to right in each of the 
frames. In the two-dimensional case the four frames show the current ellipse parameter 
values, together with their 95% confidence intervals. In the one-dimensional case, the 
two frames show the amplitude and phase, together with their 95% confidence intervals. 

qPE

III.C.2 Reconstructing fits with ut_reconstr() 
 The ut_reconstr() function has two main purposes. The first purpose is to enable 
calculation of reconstructed fits at an arbitrary set of times. The second purpose is to 
enable calculation of reconstructed fits that include a user-specified subset of constituents 
(see (100)), for example as identified based on other criteria in addition to, or in place of, 
the SNR threshold. 

III.C.2.a. Input and output parameter descriptions  
The ut_reconstr() input t_fit is a column vector of arbitrary times that 
• contains Matlab datenum values, with units of days (as for t_raw, see above 

description); 
• can be either equispaced or irregular; and 
• can include NaNs and if so the outputs (u_fit/v_fit or sl_fit) will have 

corresponding NaNs. 
The reconstructed fit (u_fit/v_fit or sl_fit) are column vectors that have 

• the same size as t_fit; and 
• the same units as u_raw/v_raw or sl_raw. 

III.C.2.b. Defaults and options 
In a call to the function ut_reconstr() (see opening portion of Section III.C for 

syntax) the default implementation, which is executed when no {options} parameters are 
passed in, includes in the reconstruction of the fit only the constituents for which SNR is 
greater than 2. This default behavior can be changed by use of the following option flag 
choices (which, as for the options to ut_solv(), are case-insensitive but cannot be 
abbreviated or truncated): 

•  ‘MinSNR’, MinSNR 
o This causes only those constituents with ≥qSNR  MinSNR (a real scalar) 

to be used in the reconstruction. The default value is 2. 
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• ‘MinPE’, MinPE 
o This causes only those constituents with percent energy ≥qPE  MinPE (a 

real scalar) to be used in the reconstruction. The default value is zero. 
If both of ‘MinSNR’ and ‘MinPE’ are selected then no constituent with either 
SNR or PE values lower than their respective specified thresholds will be 
included in the reconstruction. Constituents will be included in the reconstruction, 
or removed from it, by the MinSNR and/or MinPE criteria regardless of whether 
they were non-reference, reference, or inferred constituents in the solution. 

• ‘Cnstit’, Cnstit 
o This causes only those constituents named in Cnstit, which must be 

selected from those which were included in the model during the ut_solv 
calculation that generated coef, to be used in the reconstruction. Cnstit is a 
cell array of 4-character strings, of the same format as the cnstit input to 
ut_solv() described above. Constituents that are listed in, or omitted from, 
Cnstit are included in the reconstruction, or not, regardless of whether 
they were non-reference, reference, or inferred constituents in the solution. 
They are also included regardless of their SNR and PE values; if ‘Cnstit’ 
is used then MinSNR and MinPE are ignored. 

 
All other attributes of the reconstructed fit computed by ut_reconstr() are 

determined based on their configuration during the call to ut_solv() that created the coef 
input to ut_reconstr(). This includes, for example, whether the trend is included, whether 
nodal/satellite corrections use exact or linearized times, etc; this information is stored in 
coef.aux.opt and summarized in coef.aux.rundescr. To compute a reconstruction with 
any of these attributes changed, an additional run of ut_solv() must be made, and the 
resulting coef passed to ut_reconstr(). 

III.D. Functionality and syntax for groups of records 
A group of multiple time sequences can be analyzed with a single execution of 

ut_solv() and, if needed, a corresponding group of hindcast/forecasts can be calculated 
with a single execution of ut_reconstr(). Each record in the group can have a different 
number and distribution of time values, a different latitude, and different inference 
constants. The associated modifications to the functionality and syntax of the inputs and 
outputs are described in this section.  

 
In an analysis of a group of records, the following should be borne in mind. 

o The automated constituent selection option is not available, so the group of 
constituents to be included must be manually specified. This should be 
straightforward to overcome, by determining a suitable set of constituents based on 
some preliminary runs with a few representative members of the group.  

o Each record in the group must have the same number of times. This can be facilitated, 
if necessary, by padding shorter records with NaNs. At the start and end of the 
shorter records the padded values of t_raw must be NaNs (rather than non-NaN 
time values); this is to ensure that the corresponding u_raw/v_raw or sl_raw values 
are not filled, in the equispaced times case. 
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o Diagnostics can be computed for each member in the group but the diagnostic figures 
cannot be generated; the ‘DiagnPlots’ option is not allowed.  

o No runtime display is generated; ‘RunTimeDisp’ other than ‘nnn’ is not allowed; 
however, all potential runtime display information (coef.results, coef.aux.rundescr, 
and coef.diagn.table) for each record in the group is included in the output. 

o The order of the elements in the output fields is by increasing frequency and the 
‘OrderCnstit’ option is not allowed. This due to the fact that frequencies are the 
only ordering (unlike ordering by SNR or PE value) that is certain to be uniform 
across all records in the group, which is required by the form of the output fields as 
explained below. 

o Any other options, if passed in, are applied to all members of the group: ‘NoTrend’, 
‘PreFilt’, ‘NodSatLint’, ‘NodSatNone’, ‘GwchLint’, ‘GwchNone’, ‘Method’, 
‘TunRdn’, ‘LinCI’, ‘White’, ‘Nrlzn’, ‘LSFrqOSmp’, ‘NoDiagn’, and 
‘DiagnMinSNR’. 

 
The group of  time sequences to be analyzed is indexed as an -dimensional 

array of size , where each  value gives the size of that dimension of 
the array, and . For example, if the group consists of numerical 
simulation time series of sea level from a 20x10 array of lat-lon gridpoints, there are 

 time sequences, and a valid choice would be 

sn
n3

nn21

dn

dnnnn ××× K21

dns nnn L3=

n

200=sn 201 =n  and , for =2. 
Alternatively, they could be treated using  

10=2n
dnn

2001 =n  and =1. As another example, if 
the group consists of a current observations from bottom-mounted acoustic Doppler 
current profilers (ADCPs) deployed along two across-shelf lines, each line having 5 
ADCPs and each ADCP collecting current measurements from 50 depth bins, one 
configuration to treat the  time sequences would be 

dnn

1500=sn 2=n ,  and , 
for =3. 

5=2n 503 =n

dnn
 

The inputs to ut_solv() are just as in the single-record case described in the 
previous section, except for the following changes.  

• t_raw can be either 
o a single 1×tn  vector of times that applies to all time sequences in the 

group, in which is case it is specified exactly as in the single-record case 
described above, or  

o an 
dnt nnnnn ×××× K321

n ,1

 array of times, as necessary when more than one 
record in the group has a different set of times; in this case the number of 
times must be the same ( tn ) for each record, necessitating that if there are 
records with fewer times their time vectors must be padded with NaNs and 
their corresponding u_raw/v_raw or sl_raw must be padded with NaNs. 
Note also that none of 

dnn ,...,2  can be 1. n
• u_raw and v_raw, or sl_raw, are each 

dnt nnnnn ×××× K321  arrays (again, none 
of 

dnn  can be 1). nn ,...,, 21
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• lat is either a scalar, in which case the analysis of all the records will use the same 
value, or a 

dn  array. nnnn ××× K321

• cnstit cannot be ‘auto’, but rather must be a specific list of constituents to include; 
this is required in order that the same group of constituents is included for each 
individual analysis, which enables convenient grouping of the results fields in 
coef (explained below).  

• If constituents are to be inferred, then the same inference and reference 
constituents will be used (same Infer.infnam and Infer.refnam) in each 
individual analysis, and either 

o Infer.amprat and Infer.phsoff  are the same size as each other and are 
In2 x1 (two-dimensional case) or In x1 (one-dimensional case) as 

explained above for treatment of a single record, in which case the same 
inference constants will be applied to every record, OR 

o Infer.amprat and Infer.phsoff  are the same size as each other and are 
dnI nnnnn ×××× K3212  (two-dimensional case) or 

dnI nnnnn ×××× K321  
(one-dimensional case), such that different inference constants can be 
applied to each record. 

• Option flags (other than ‘infer’ as just noted) will be applied identically to each 
individual time sequence analysis, with the exception of ‘OrderCnstit’ and 
‘DiagnPlots’, which will be ignored; ordering of constituent-indexed outputs is 
always by increasing frequency. 

 
The output coef from ut_solv() is as in the single-record case described above except 

for the following changes. 
• Fields of size allcn x1 in the single-record case have size 

dnallc nnnnn ×××× K321  
in the case of a group analysis. 

• Fields of size 1x1 in the single-record case have size 
dnnnnn ××× K321  in the case 

of a group analysis. 
• The ordering of the elements in each of these fields is by increasing constituent 

frequency, as explained above. 
 The exceptions are that, to avoid redundancy in fields of the output coef,  

• coef.name, coef.aux.frq, and coef.aux.lind are each allcn x1 (as determined by the 
fixed set of constituents in cnstit, which are included identically in the analysis of 
each record in the group),  

• the only fields of coef.aux.opt that potentially differ from the single-record case 
are equi, infer.amprat and infer.phsoff, and the latter two are the same size as 
their corresponding inputs, 

• if a single lat value was passed in then coef.aux.lat is a scalar. 
 

The inputs to ut_reconstr() in the group case are as for the single-record case 
described above, with the following exception. 

• t_fit can be either 
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o a single 1×tn  vector of times to be used for all time sequences in the 
group, in which is case it is specified exactly as in the single-record case 
described above, or  

o an 
dnt nnnnn ×××× K321  array of times, in which case each record is 

computed at its own set of times, though the number of times must be the 
same ( tn ) for each record. 

The output from ut_reconstr() in the group case is the same as for the single-record case 
except that for u_fit and v_fit, or sl_fit, each is an  

dnt nnnnn ×××× K321  array instead of 
an x1 column vector. tn

III.E. Relationships to existing software 
 The UTide code incorporates features of (a) the t_tide Matlab functions (PBL02), 
including use of certain important t_tide components unmodified (the database of 
harmonic constants, the constituent selection decision tree code, the linearized confidence 
interval calculations, the band-averaging of residual spectra); (b) the r_t_tide Matlab 
functions (LJ09); and (c) the “versatile tidal analysis” Fortran program (FCB09).  
 
 UTide includes all functionality of t_tide except for its XTide capabilities. 
However, exact agreement with t_tide in the case of a record with an even number of 
points cannot be achieved by UTide because the way t_tide drops the last point is not 
compatible in general with the capability of UTide to accept irregular times. In addition, 
the confidence interval calculations of UTide cannot exactly recover those of t_tide. In 
t_tide the scaling of spectral quantities for the colored case included an extra factor of 
two, and simplifying assumptions were made (as explained in detail above) about the 
covariance matrix (59), that affect both the white and colored case, but are not made in 
UTide. An additional, though minor, contribution to the differences in Monte Carlo cases 
is due to the stochastic nature of the calculation, which causes each run (of either UTide 
or t_tide) to yield slightly different results. As a result of these relationships, in order to 
achieve the closest agreement of UTide results with those of t_tide, for testing purposes, 
there are a number of requirements. First, UTide must be executed with an odd number of 
points. Second, if t_tide is called with both the start_time and lat inputs, the equivalent 
call to UTide requires the ‘NodsatLinT’ and ‘GwchLinT’ options; if t_tide is called with 
only the start_time input, the equivalent call to UTide requires the ‘NodsatNone’ and 
‘GwchLinT’ options; if t_tide is called without the start_time input input, the equivalent 
call to UTide requires the ‘NodsatNone’ and ‘GwchNone’ options; and if inference 
calculations are done by t_tide the equivalent call to UTide requires the ‘InferAprx’ 
option. Third, the ‘OLS’ option to UTide must be used because t_tide does not implement 
the IRLS method that is the default for UTide. Finally, it should be noted that calling 
UTide with the ‘OrderCnstit’,‘frq’ option will make comparisons to t_tide output more 
convenient. 
 
 The IRLS features of r_t_tide are included in UTide, including their application to 
two-dimensional raw input and irregularly distributed times.  Because r_t_tide is a 
modification of t_tide to include the IRLS solution method, the above noted relationships 
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between UTide and t_tide generally apply when comparisons between UTide and r_t_tide 
outputs are made.  
 
 All features of the FCB09 Fortran code for the one-dimensional case are available 
in UTide (in addition, UTide includes their generalization to the two-dimensional case), 
with the exceptions that (a) UTide does not include the same covariance-based 
constituent selection diagnostics developed from the FCB09 singular value 
decomposition, and (b) UTide confidence intervals are based on the new formulation and 
reported for the current ellipse parameters, while those of the FCB09 code are for the 
cosine/sine coefficients and based on the white noise presumption. The only change to 
the default configuration of UTide, in order to create results with the closest agreement to 
those of the “versatile tidal analysis” program, is to use the option ‘OLS’. 

III.F. Computational demands 
 The computational demands of UTide are significantly higher than some previous 
tidal analysis software, for the following reasons: (i) the IRLS solution method is used, 
which involves multiple iterations of solutions each with demand similar to an OLS 
solution; (ii) treating nodal/satellite corrections and Greenwich phase calculations using 
the exact times substantially increases the memory requirements and the number of 
computations, (iii) the complex-valued formulation of the matrix system is solved, for 
reasons explained above, which can be less efficient than solving comparable real-valued 
formulations; (iv) in the case of irregular times, the Lomb-Scargle periodogram 
calculations are slower than their FFT counterparts for uniformly distributed times; (v) 
the generality of the new confidence interval calculation is slightly more costly than 
earlier versions; and (vi) the constituent selection diagnostics require additional 
computation. The relative importance of each of these factors in contributing to the 
increased computation demand will of course differ depending on the particular analysis 
at hand (number of raw input times, whether they are irregular, number of constituents, 
one-dimensional or two-dimensional raw input, whether Monte Carlo is used for 
confidence intervals, etc). However, the above list of reasons for increased burden is 
roughly in order of decreasing importance, very generally. 
 

Crude guidelines for the computational burden result from summarizing the 
results of numerous analyses (each an execution of ut_solv() then ut_reconstr() in 
sequence; the large majority of the time is spent on the former) of various test datasets of 
hourly sea level (Newport, RI) and currents (Martha’s Vineyard Coastal Observatory). 
The datasets were sampled uniformly or irregularly for durations between a month and 5 
years. Using a modest-capability 2007-era laptop PC with Matlab 2010a, when 
configured to mimic t_tide computations (i.e. ‘OLS’, ‘NodsatLinT’, ‘GwchLinT’) UTide 
used a comparable amount of memory, and was approximately twice as slow, compared 
to t_tide. This meant run times from between about 1-2 seconds and 20-30 seconds, for 
the one month and 5 year records respectively. When the exact formulations for 
nodal/satellite and Greenwich phase lag calculations were implemented, the run times 
increased by about 2-5 times, but remained comparable in speed or faster than the Fortran 
code of FCB09, except for records of a year or more. Such records become significantly 
slower and, notably when the Lomb-Scargle periodogram is calculated (colored case with 
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irregular times), very memory-intensive. When the IRLS solution method was also 
implemented, with the Cauchy weight function and default tuning parameter, the run 
times increased by an additional factor of 2 for the shorter records and by a higher 
amount, more than an order of magnitude in some cases, for the longer records.  

 
These results just described are of course only applicable for the particular test 

records and computational system used; in general, results will vary depending on signal 
to noise characteristics of the raw inputs, the nature of the sampling and duration of the 
records, and the configuration of the runtime options, as well as the computing resources. 
Nonetheless, it is clear that relative to other tidal analysis software, the additional burden 
of UTide is at most a few orders of magnitude higher, for records up to 5 years long, and 
in many cases a smaller increase. Considering that availability of computing power for a 
typical researcher goes well beyond a typical 2007 laptop, in most applications these 
costs seem modest enough not to be a major constraint. 
 
 In this context, UTide has been developed based on the view that the additional 
features it incorporates are sufficiently valuable that they offset the undesirable increase 
in computational demands. However, in order to lessen the computational burden, to the 
extent it is possible, certain aspects can be omitted from a calculation. For example, the 
‘OLS’ option will forego the cost of the IRLS computations, the ‘White’ option will 
eliminate the spectral calculations (notably the Lomb-Scargle algorithm for irregular 
times), the ‘LinCI’ option obviates the Monte Carlo random realizations, the ‘NoDiagn’ 
option omits computation of constituent selection diagnostics, and a smaller ‘Nrlzn’ value 
will require less cycles when using Monte Carlo. If computational demands are a 
constraint, then a good strategy will be to do initial calculations using these options (e.g.,  
‘OLS’, ‘White’, ‘LinCI’, possibly ‘NoDiagn’) and then later carry out a select few runs 
that involve the slower features as needed.  
 

There are aspects of UTide for which future modifications could potentially 
increase its computational efficiency substantially. Examples would be to (a) create a 
precompiled executable in a different language, (b) implement more efficient code, 
including the matrix solution formulations, and/or (c) use a ‘fast’ Lomb-Scargle 
algorithm, such as that of Press and Rybicki (1989), which will reduce processing time 
although, as explained above, the major demand of Lomb-Scargle calculations is on 
memory. There are also potential modifications that would lessen its speed in return for 
reduced memory demands, which is useful when memory limitations are more of a 
constraint than processing speed; for example, an alternative loop arrangement for the 
Lomb-Scargle code could reduce the memory demand with the trade-off of slower 
runtimes. Pursuit of such improvements can follow on an as-needed basis. 
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