Mean Stream-Coordinate Structure of the Kuroshio Extension
First Meander Trough

6 March, 2008
Penelope J. Howe,
Kathleen A. Donohue, and D. Randolph Watts

Graduate School of Oceanography
University of Rhode Island
The Kuroshio Extension (KE) alternates on decadal timescales between “stable” and “unstable” meander states.

Goal here is to examine cross-stream fluxes in the stable state by investigating:

- Down- and cross-stream velocity structure
- Cross-current PV structure
- Differences in structure between crest and trough

After Qiu and Chen, 2005
Kuroshio Extension System Study

KESS:

- 46 Current and Pressure sensor-equipped Inverted Echo Sounders (CPIES)
- June 2004 - June 2006
- First meander crest and trough
- Stable for first 6 months
- Unstable thereafter

After Qiu and Chen, 2005
Feature Surveys

• 2004, CPIES deployment, stable state
• Conducted fine-scale ADCP/CTD surveys to obtain a synoptic picture of the current structure

- Transects 1-4 over mean SSH contours for time of surveys (5/2-5/6)
- Sample transect
 - ~15 km CTD resolution
 - ADCP data ~70-650m
 - CTD data 0-1200m
Why Use Stream Coordinates?

- **Meanders** cause shifts in direction of main jet flow
- Necessary for estimating **cross-frontal flow**
- Increases accuracy of **PV calculations**

Stream-coordinate system reveals greater magnitude of core maximum and velocity gradients.

Averaging east-west velocities by latitude...

...or as a function of distance from core...

...smears out structure.
Defining the Stream-Coordinate System

- ADCP data averaged over 100-300 m depth range
- **Core** = location of maximum velocity

Sample transect

5 km gridded, 100-300 m averaged ADCP
Defining the Stream-Coordinate System

• ADCP data averaged over 100-300 m depth range

• **Core** = location of maximum velocity

• **Down-stream direction** = vector average of three central ADCP vectors

• Project data to cross-stream line

• Rotate to down- and cross-stream components

Sample transect

5 km gridded, 100-300 m averaged ADCP
Mean Down- and Cross-stream Velocity

- Maximum core down-stream velocity > 1.8 m/s
- Cross-stream velocities ~0.1 m/s
- Horizontal gradients stronger on cyclonic (north) side of core
Potential Vorticity

• Combining hydrographic and velocity data allows calculation of PV

• Looking for locations of **PV gradients along isopycnals**

• Is thickness PV the only significant component?

• Use **Ertel’s PV** in stream coordinates *(Bower, 1989)*:

\[
\frac{D}{Dt} \left(\mathbf{\zeta_a} \cdot \nabla \rho \right) = 0 \quad \Rightarrow \quad Q = -\frac{1}{\rho} \frac{\partial \rho}{\partial z} \frac{\partial v}{\partial x} + \frac{1}{\rho} \frac{\partial \rho}{\partial x} \left(f + \frac{\partial v}{\partial x} + \kappa v \right)
\]

- “twisting”
- “thickness”
- “curvature”
- “cross-stream shear”
Mean Potential Vorticity Structure

Total PV
\(q = -1/\rho \, dp/dx \, dv/dz + (f + dv/dx + \kappa v) * N^2 / g \)
\([10^{-10} \, m^{-1} \, s^{-1}]\)

- CTD data: surface-1200m
- ADCP data extrapolated to surface
- Strong band of high-PV water follows isopycnals down from north to south of core
- Low-PV **mode water** evident
- \((Ro) \sim 0.8\) just north of core, weakly negative south of core

Colors are PV, contour lines are \(\sigma_\theta\)
Does Shear Vorticity Matter?

- **Cross-stream shear** ~40% of total PV (~80% of f) at shallow depths north of core
- **Twisting vorticity** ~15-20% of total PV (~30% of f) north of core
PV as a Function of Density

Where are PV gradients?

• $\sim \sigma_\theta = 25.1-25.5$, **Mode water region**: strong gradients, “barrier”
• $\sim \sigma_\theta = 25.5-26.4$, **Main thermocline**: weaker gradients
• $\sim \sigma_\theta > 26.4$, **NPIW**: no gradients, “blender”
How Representative is the Survey Mean?

- **CPIES** provide a longer time series of geopotential height…

- Frontal waves may cause **variability** in flow speed and structure
CPIES

- **Tau** (round-trip acoustic travel time) is a proxy for **geopotential height**
- Use **geostrophy** to obtain baroclinic velocity shears
- Add **bottom CM velocities** to get absolute (barotropic + baroclinic) velocity profiles
To generate 6-month stream-coordinate mean at a longitude:

- **Mean core location** = latitudinal average of cores at set longitude
- **Mean down-stream** = vector-average direction of core velocities
- **Mean velocities** = East-north vector-average as function of distance from core after co-locating cores and cross-stream axes

Mean SSH contours in gray provide context
Clockwise rotation of velocity with depth at and south of core

- Implies **southward cross-frontal flux** and subpolar-to-subtropics **downwelling**
Core Down-stream Velocity Variability

- Maximum **surface** down-stream velocities vary between 1-2 m/s
- **Bottom** down-stream velocities at the core reach as high as 0.15 m/s but are also negative at times
 - Deep flow direction reversal may be due to deep eddy activity

Down–stream Bottom and Surface Velocities
Core at 146.00°E

- Velocity [m/s]
- Days in 2004
- Surface
- Bottom
Core Cross-stream Flow Variability

Cross-stream Bottom Velocities
Core at 146.00°E

- Cross-stream bottom velocities show significant variability; southward cross-stream flow dominates at this location.
- Suggestive of an event-driven process; mixture of remote and local forcing?

Regime change to unstable
Structural Changes: Crest-Trough-Crest

Mean Absolute Velocities In Increments of 15 km from the Core
2004/06/01 to 2004/12/01

- Repeat stream-coordinate averaging procedure at other longitudes…
Structural Changes: Crest-Trough-Crest

Mean Absolute Velocities In Increments of 15 km from the Core
2004/06/01 to 2004/12/01

Counter-clockwise rotation with depth at first meander crest

- Implies **northward cross-frontal flux** and subtropics-to-subpolar upwelling
Structural Changes: Crest-Trough-Crest

Mean Absolute Velocities In Increments of 15 km from the Core 2004/06/01 to 2004/12/01

Surface and deep currents aligned leaving meander trough

- Implies little cross-stream flux
Structural Changes: Crest-Trough-Crest

Mean Absolute Velocities In Increments of 15 km from the Core
2004/06/01 to 2004/12/01

- Southern recirculation gyre
 - Surface and deep currents not quite aligned implies interaction of gyre with KE jet
Structural Changes: Crest-Trough-Crest

Mean Absolute Velocities In Increments of 15 km from the Core
2004/06/01 to 2004/12/01

Northern recirculation gyre
In Summary…

- Down-stream velocities vary significantly in magnitude (1-2 m/s); cross-stream velocities also vary, shifting between northward and southward cross-frontal flow.

- Relative vorticity plays a large role in strengthening PV gradients across the jet along shallow isopycnals; cross-stream shear and twisting vorticity both contribute significantly (~40% and 15-20% of total PV respectively).

- Tendency for northward cross-stream flux and upwelling is seen in the first meander crest, southward flux and downwelling into the first meander trough; southern recirculation gyre interacts with jet.
Comparison with Gulf Stream

<table>
<thead>
<tr>
<th></th>
<th>Gulf Stream</th>
<th>Kuroshio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down-stream Velocity</td>
<td>Maximum averages around 2 m/s, varying between 1.5-2.5 m/s(^1,2,3,4)</td>
<td>Maximum averages around 1.5 m/s, varying between 1-2 m/s</td>
</tr>
<tr>
<td>Stream Width</td>
<td>214 km between lines of 0 transport over 0-2000 m(^3), narrower in troughs than crests(^1)</td>
<td>~150-200 km between lines of 0 down-stream velocity estimated from surveys and CPIES</td>
</tr>
<tr>
<td>Total PV</td>
<td>(O(10^{-10}))(^1)</td>
<td>(O(10^{-10}))</td>
</tr>
<tr>
<td>Contribution of Lateral Shear Vorticity</td>
<td>In steepening crest, up to 120% of (f) on cyclonic side, ~-40% of (f) on anticyclonic side(^1)</td>
<td>Entering trough, >80% of (f) on cyclonic side, ~-30% of (f) on anticyclonic side</td>
</tr>
</tbody>
</table>

\(^1\) Liu and Rossby, 1993; \(^2\) Rossby and Gottlieb, 1998; \(^3\) Halkin and Rossby, 1985; \(^4\) Rossby and Zhang, 2001