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Kuroshio Extension System

* The Kuroshio Extension (KE)
alternates on decadal timescales
between “stable” and “unstable’
meander states

* Goal here is to examine cross-stream
fluxes in the stable state by
investigating:

s% Down- and cross-stream
velocity structure

s% Cross-current PV structure

¥ Differences in structure
between crest and trough
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Kuroshio Extension System Study

KESS:

* 46 Current and Pressure sensor-
equipped Inverted Echo Sounders
(CPIES)

* June 2004 - June 2006
* First meander crest and trough
 Stable for first 6 months

* Unstable thereafter
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Feature Surveys

36°N

« 2004, CPIES deployment, stable state —ADCP 100-300m

A CTD sites
* Conducted fine-scale ADCP/CTD surveys to |
obtain a synoptic picture of the current structure
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Sample transect

e ~15 km CTD resolution

* Transects 1-4 over mean SSH contours * ADCP data ~70-650m
for time of surveys (5/2-5/6) * CTD data 0-1200m
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Why Use Stream Coordinates?

a) Latitudinally Averaged East-West Velocﬂy [m/s]

* Meanders cause shifts in direction of
U a % main jet flow
0.8
' 0.6 . .

o4 * Necessary for estimating cross-frontal flow
0.2

0 -

| -2 * Increases accuracy of PV calculations

35.5°N  35°N  34.5°N  34°N
b) East—-West Velocity as Function of Distance from Core [m/s]
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Averaging east-west velocities by latitude...

«— or as a function of distance from core...
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2 ...Smears out structure.

) Down-stream Velomty [m/s]

1% “— Stream-coordinate system reveals

ii greater magnitude of core maximum and
§§ velocity gradients.
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Defining the Stream-Coordinate System

-50
* ADCP data averaged over 100-
300 m depth range

* Core = location of maximum
velocity
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Sample transect
5 km gridded, 100-300 m averaged ADCP



Defining the Stream-Coordinate System

-50

—>ADCP

A CTDs :
* ADCP data averaged over 100- ; _Cr"ss_‘s“eam
300 m depth range
* Core = location of maximum 50
velocity

* Down-stream direction = vector
average of three central ADCP
vectors 150

Distance [km]
o
(=]

* Project data to cross-stream line

200
* Rotate to down- and cross-

stream components
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Sample transect
5 km gridded, 100-300 m averaged ADCP



Depth [m]

Mean Down- and Cross-stream Velocity

200

600

V (Down-stream velocity) [m/s]

1.8 .
16 * Maximum core down-stream
1-‘2‘ velocity > 1.8 m/s
I

* Cross-stream velocities ~0.1 m/s

04  * Horizontal gradients stronger on
0.2 cyclonic (north) side of core
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Potential Vorticity

* Combining hydrographic and velocity data allows calculation of PV
* Looking for locations of PV gradients along isopycnals
* Is thickness PV the only significant component?

* Use Ertel’s PV in stream coordinates (Bower, 1989).
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“cross-stream shear”



Mean Potential Vorticity Structure

Total PV

(g =—1/p dp/dx dv/dz + (f + dv/dx + W)*szg)

107 9m 15

o

* CTD data: surface-1200m

* ADCP data extrapolated to
surface

CO—==NWhO W=
oo

|
—

* Strong band of high-PV water
5 follows isopycnals down from
1 north to south of core

-100 -50 0 50 100

0 * Low-PV mode water evident

o2 *(Ro)~ 0.8 just north of core,
01 weakly negative south of core
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Colors are PV, contour lines are g,



Depth [m]

Does Shear Vorticity Matter?
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* Cross-stream shear ~40% of total PV (~80% of f) at shallow depths north of core

* Twisting vorticity ~15-20% of total PV (~30% of f) north of core



o, [kg/m’]

PV as a Function of Density

Total PV as a Function of o, [1 0 1%m! 8_1] Relative Vorticity as a Function of Gy [1 07 10m! 3‘1]
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Where are PV gradients?

- ~0, = 25.1-25.5, Mode water region: strong gradients, “barrier”
« ~0, = 25.5-26.4, Main thermocline: weaker gradients

« ~0, > 26.4, NPIW: no gradients, “blender”



How Representative is the Survey Mean?

* CPIES provide a longer time series of geopotential height...
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* Frontal waves may cause variability in flow speed and structure



CPIES

* Tau (round-trip acoustic travel time) is a proxy for geopotential height
* Use geostrophy to obtain baroclinic velocity shears

* Add bottom CM velocities to get absolute (barotropic + baroclinic) velocity profiles

Surface Dynamic Height
Referenced to 5300 dbar
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Distance [km]

Stream-Coordinate Mean from CPIES

Mean Absolute Velocities In Increments of 15 km from the Core
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Distance [km]

1000

To generate 6-month stream-
coordinate mean at a longitude:

* Mean core location = |atitudinal
average of cores at set longitude

* Mean down-stream = vector-
average direction of core velocities

* Mean velocities = East-north
vector-average as function of
distance from core after co-locating
cores and cross-stream axes

Mean SSH contours in gray
provide context



Distance [km]

Stream-Coordinate Mean from CPIES

Mean Absolute Velocities In Increments of 15 km from the Core
2004/06/01 to 2004/12/01

1000}
800
600f Clockwise rotation of velocity with
depth at and south of core
400} = * Implies southward cross-frontal
S flux and subpolar-to-subtropics
7 % downwelling
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Core Down-stream Velocity Variability

Down-stream Bottom and Surface Velocities
Core at 146.00°E

Velocity [m/s]

—— Surface — Bottom

200 250 300
Days in 2004

* Maximum surface down-stream velocities vary between 1-2 m/s

* Bottom down-stream velocities at the core reach as high as 0.15 m/s but
are also negative at times

* Deep flow direction reversal may be due to deep eddy activity



Core Cross-stream Flow Variability

Cross—stream Bottom Velocities
Core at 146.00°E

0.2 .
Southward )
— 0.1}
(7}
g N\
> 0 M regime change
S to unstable
Q
-0.1
Northward
0.2 200 250 300
Days in 2004

* Cross-stream bottom velocities show significant variability; southward cross-
stream flow dominates at this location

* Suggestive of an event-driven process; mixture of remote and local forcing?



Distance [km]

Structural Changes: Crest-Trough-Crest

Mean Absolute Velocities In Increments of 15 km from the Core
2004/06/01 to 2004/12/01
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averaging procedure at other
800r longitudes...
600
7 X
4 \
E; " %/,;
400 = ___f_/ 0
Is$ %
> ? %’
& 26 ‘%
200f & —> 4
Surface 1 ms
—_— _1
Bottom 0.2 m s
00 2(I)0 460 660 860 1000

Distance [km]



Distance [km]

Structural Changes: Crest-Trough-Crest

Mean Absolute Velocities In Increments of 15 km from the Core
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Counter-clockwise rotation with
depth at first meander crest

* Implies northward cross-frontal
flux and subtropics-to-subpolar
upwelling



Distance [km]

Structural Changes: Crest-Trough-Crest

Mean Absolute Velocities In Increments of 15 km from the Core

2004/06/01 to 2004/12/01
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Surface and deep currents
aligned leaving meander trough

* Implies little cross-stream flux



Distance [km]

Structural Changes: Crest-Trough-Crest

Mean Absolute Velocities In Increments of 15 km from the Core

2004/06/01 to 2004/12/01
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Southern recirculation gyre

* Surface and deep currents not
quite aligned implies interaction of
gyre with KE jet



Structural Changes: Crest-Trough-Crest

Mean Absolute Velocities In Increments of 15 km from the Core
2004/06/01 to 2004/12/01
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In Summary...

s Down-stream velocities vary significantly in magnitude (1-2 m/s);
cross-stream velocities also vary, shifting between northward and
southward cross-frontal flow.

Y Relative vorticity plays a large role in strengthening PV gradients
across the jet along shallow isopycnals; cross-stream shear and
twisting vorticity both contribute significantly (~40% and 15-20% of
total PV respectively).

Y Tendency for northward cross-stream flux and upwelling is seen in
the first meander crest, southward flux and downwelling into the first
meander trough; southern recirculation gyre interacts with jet.



Comparison with Gulf Stream

Gulf Stream

Kuroshio

Down-stream
Velocity

Maximum averages
around 2 m/s, varying
between 1.5-2.5 m/s’234

Maximum averages
around 1.5 m/s, varying
between 1-2 m/s

Stream Width

214 km between lines of 0
transport over 0-2000 m 3,
narrower in troughs than
crests’

~150-200 km between
lines of 0 down-stream
velocity estimated from
surveys and CPIES

Total PV

O(10-10)7

0(10-10)

Contribution of
Lateral Shear
Vorticity

In steepening crest, up to
120% of f on cyclonic side,
~-40% of f on anticyclonic
side’

Entering trough, >80% of f
on cyclonic side, ~-30% of
f on anticyclonic side

'Liu and Rossby, 1993; 2Rossby and Gottlieb, 1998, 3Halkin and Rossby, 1985;

‘Rossby and Zhang, 2001




