DEEP EDDIES MODULATE FRONTAL MEANDER GROWTH IN THE KUROSHIO EXTENSION

Karen L. Tracey, D. Randolph Watts, and Kathleen A. Donohue
ktracey@gso.uri.edu www.po.gso.uri.edu/dynamics/KESS www.uskess.org

1. Upper and deep variability in the Kuroshio Extension

During the Kuroshio Extension System Study (KESS), a two-dimensional array of current- and pressure-recording inverted echo sounders (CPIES) provided synoptic measurements of the upper and deep fluctuations in the Kuroshio Extension between 143°E and 149°E with mesoscale resolution. Downstream-propagating meanders, also called frontal waves, with periods 3-60 d were always present between June 2004 and September 2005. Meandering of the Kuroshio Extension is characterized by variability of path displacements as a function of downstream distance or as the variability of surface geopotential height relative to 5300 dbar (η_upper) along the temporal mean path. Anomalies in the deep reference field at 5300 dbar (η_upper) were obtained along mean path as η_upper. Both η_upper and η_upper were band-pass filtered to characterize the eastward-propagating frontal meanders. Most meanders did not grow systematically downstream. Instead, meanders alternately grew and decayed as they interacted with remotely-generated deep eddies which propagated into the region from the northeast and east. Interactions have different outcomes depending on the phasing of the upper and deep anomalies.

2. No growth: Upper and deep propagate together with no vertical phase offset

Example A

Different views show trough a (low η_upper, black contours) propagating downstream along the Kuroshio Extension nearly in phase with a low η_upper (blue shading). Similarly, crest b (high η_upper, gray contours) and high η_upper (pink shading) propagate together downstream. This orientation does not support growth and amplitudes decrease downstream.

3. Growth: Vertical phase offset favorable for baroclinic instability

Example B

Upper meanders propagating downstream along the jet. Deep eddies propagating NNE-SSW across the jet. Growth can occur from interaction with pre-existing deep eddies if they encounter each other with the deep eddy offset about ¼ - ½ wavelength ahead of the upper meander.

4. Growth or decay: Depends on evolving vertical phase offset

Example D

Crest h (high η_upper, gray contours) and trough g (low η_upper, black contours) propagate from west to east along the upper jet. Deep η_upper anomalies highs (pink) and lows (blue) move in the opposite direction — from east to west. As upper highs and lows propagate eastward they encounter pre-existing deep highs and lows translating westward. Interactions have different outcomes depending on the phasing of the η_upper and η_upper anomalies. If a lower anomaly leads an upper anomaly of the same sign, both features amplify. Otherwise they decay. Their crossing paths generate a cycle of temporary growth and decay.

Example E

5. Pre-existing deep eddies translate westward

Complex empirical orthogonal function 1st modes of η_upper show westward propagation. Deep eddies strengthen where their paths cross the upper jet. Bottom pressures from the OFES and HYCOM models also show westward propagation in these period bands (Greene, 2010; Zamorski and Donohue, 2012). High deep variance extends eastward to Shatsky Rise, suggesting the deep eddies originated when the meandering Kuroshio Extension encountered that topography.


KESS is funded by National Science Foundation Grants OCE02-21008 and OCE08-51246.

Visit poster B1417