Barotropic Transport Variability in Drake Passage from the cDrake experiment

Kathleen A. Donohue1, Teresa K. Chereskin2, D. Randolph Watts1, Karen L. Tracey1, Amy Cutting1

1Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA.
2Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA.

kdonohue@gso.uri.edu

1. cDrake Objectives

- Quantify ACC transport and dynamics.
- Determine horizontal and vertical structure of the time-varying transport.
- Describe the eddy field.
- Guide future monitoring.
- Assess model skill.

2. Motivation

- ISOS concluded that barotropic ACC transport could be monitored using across passage pressure differences.
- Hughes et al. (1999) provided a theoretical case for a southern barotropic transport mode that is highly correlated to bottom pressure on the southern side of the ACC.
- Observationally, this mode is difficult to observe, local baroclinic processes swamp the larger-scale barotropic variability.

3. Data

- 38 current and pressure recording inverted echo sounders (CPIES).
- Array deployed in 2007.
- Annual telemetry cruises until 2011 recovery.
- Pressure data are derifted and detided (including MF and Mm: Egbert and Erofeeva, 2002).

4. Bottom Pressure Records

- Bottom pressure in the dynamics array is strongly influenced by ACC meandering (cyclogenesis).
- Variance within the dynamics array is two times higher than to the north and three times higher than to the south.

5. Transport Estimates

- Barotropic transports are estimated by bottom pressure differences across the passage.
 - C17-C02, C16-C02 span a wide fraction of the passage.
 - C15-C03 derives from sites that are locally correlated.
 - Multiple-site averages further reduce local small-scale eddy variability.
- Yet these ‘best’ estimates are quite different -- Transports are sensitive to the choice of endpoint, particularly the northern endpoint.

6. Empirical Orthogonal Functions

- EOF 1 – a passage-wide uniform-amplitude signal.
 - spectral peaks near 10 and 4 days
- EOF 2 – a transport mode and correlates well with the multiple-site transport estimate.
 - broad spectral peak centered at 30 days

7. Relationship with Atmospheric Forcing

- Both modes are coherent and in phase with the Antarctic Oscillation Index but at different frequencies.

8. Conclusions

- cDrake OS2010 Posters
 - Wednesday
 - IT35M-04. Constituents of sea surface height variability in Drake Passage.
 - D. Cutting

- Thursday
 - IT45K-22. The Vertical Structure of the ACC in Drake Passage from Direct Velocity Observations and the SOSE.
 - Y. Firing

- cDrake OS2010 Presentations
 - Friday 8:15
 - ITS1E-02. Deep Cyclogenesis in Drake Passage.
 - T.K. Chereskin

Also see:
http://www.po.gso.uri.edu/dynamics/Drake
http://tryfan.ucsd.edu/cpies/cpies.htm

References

Egbert, G. D. and S. Erofeeva (2002). Efficient inverse modeling of barotropic ocean tides. JTECH, 19
AAO Index http://www.cpc.noaa.gov/products/precip/CWlink/daily_ao_index/aao_index.html
Barotropic Mf and Mm tides. http://www.oce.orst.edu/research/po/research/tide/

For further information, see:
http://www.po.gso.uri.edu/dynamics/Drake
http://tryfan.ucsd.edu/cpies/cpies.htm