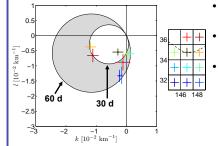


Evidence of vertical coupling in the Kuroshio Extension

Andrew Greene¹; D. Randolph Watts¹; Georgi Sutyrin¹; Hideharu Sasaki²

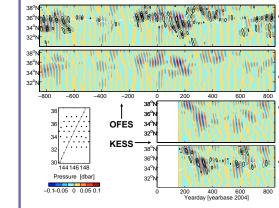
1. Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, United States, 2. Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan.

agreene@gso.uri.edu



KESS Observing Array 3301 31°N Current and pressure recording inverted echo sounder 136°E 138°E 140°E 142°E 144°E 146°E 148°E 150°E 152°E Estimates upper and deep ocean streamfunction, ψ_U and ψ_D

Major Points


- 1. 30-60 day upper and deep circulation exhibited strong energy and coherence near Kuroshio jet axis.
- 2. Deep eddies propagated SSW across the array and interacted with upper-ocean meanders.
- 3. Deep-pressure anomalies were consistent with 30-60 day topographic Rossby wave (TRW) dispersion.
- 4. Ocean general circulation model for the Earth Simulator (OFES) also showed coupling between SSW propagating deep eddies and upper-ocean meanders in the 30-60 day band in KESS region.

3. 30-60 day TRW dispersion

- Wavenumbers (k,l) estimated from CEOF of bottom pressure.
- Most (k,l) pairs consistent with TRW dispersion (shaded-grey region).
- Black (k,l) pair does not agree with TRW dispersion.
- Deep-pressure anomalies do not propagate as free waves when the upper and deep fields are strongly coupled.

4. Hovmöller diagrams: 30-60 day bottom pressure and ψ_{11} , OFES and KESS

50 cases of strong SSW propagation of 30-60 day pressure anomalies in OFES (5 yr.).

- ~16 similar cases in KESS (2 yr.).

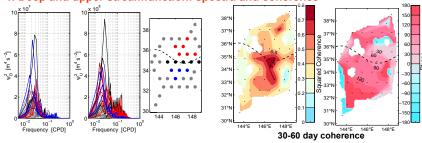
Similar phase speeds and directions in KESS and OFES.

Like KESS, strong upper anomalies develop jointly with deep anomalies, as wave-packets cross the baroclinic zone.

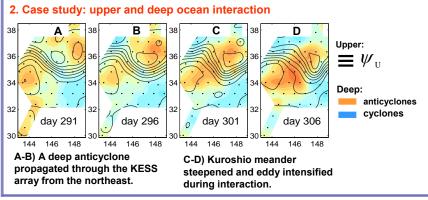
The agreement shows that OFES models this recurrent energetic process well in the Kuroshio Extension.

Impacts of the major findings

- Strong statistical coupling and phase offset between upper and deep streamfunction is characteristic of baroclinic instability.
- Our case is different from classic baroclinic instability. Short barotropic TRWs entered from the northeast and coupled to the baroclinic Kuroshio Extension.


· Vertical coupling and joint growth of upper and deep anomalies lasts for a limited time, \sim 14 d, because deep anomalies propagate SSW across the jet rather than along it.

 Since TRWs propagate SSW across the KESS array, they can only couple to meanders in a segment of mean path flowing NW to SE, allowing a favorable phase-match.


- Since growth due to this process is localized to this region by bathymetry it may explain the semi-permanent nature of the Kuroshio Extension crest/trough feature downstream of Japan.

Kuroshio Extension System Study (KESS) is funded by the National Science Foundation, OCE-0221008 and 0851246.

1. Deep and upper streamfunction: spectra and coherence

- Between 50% and 25% of the total variance was in the 30-60 day band for deep and upper streamfunctions, respectively,
- · Squared coherence and energy is largest near the Kuroshio trough region.
- In regions of high coherence deep streamfunction leads upper streamfunction, on average 90° ≈ 10 days. * Dashed line: mean Kuroshio path

