Using remote sensing from *below* (and above) to study the dynamics of the PAMS region

Mark Wimbush

Graduate School of Oceanography University of Rhode Island

... in collaboration with...

Magdalena Andres Jeffrey Book Kyung-Il Chang David Farmer **Amy Farris** Patrick Hogan Hiroshi Ichikawa Kaoru Ichikawa Shiro Imawaki Gregg Jacobs **Charles James** Koji Kakinoki Kuh Kim Hideki Kinoshita Qiang Li

Byung-Ho Lim **Douglas Mitchell** Hirohiko Nakamura Ayako Nishina Jae-Hun Park Moon-Sik Suk Georgi Sutyrin William Teague Karen Tracey Hiroshi Uchida Shin-ichiro Umatani D. Randolph Watts Yongsheng Xu Jong-Hwan Yoon Xiao-Hua Zhu and many others.

Main objectives of the talk:

Give an overview of PAMS region research in which I have been involved during the past two decades.

 Explain the effectiveness and versatility of the Inverted Echo Sounder ("IES") as a research instrument for PAMS region research.

Kuroshio Loop Current in the SCS

IES arrays in the PAMS region

Inverted Echo Sounder (IES) operation

IES

12kHz acoustic echo time

IES enhancements:

• IES + Pressure sensor = "PIES"

PIES + Current sensor = "CPIES"

ECS1 PIES array (1991-92)

ECS1 Results

- Persistent Kuroshio meanders with **period 11 days**, propagating downstream at **phase speed 20 km/day**.
- Kuroshio meanders compared with Gulf Stream off the southeast U.S. (Xue & Mellor, 1993):

meander period = 2 × Gulf Stream value
meander phase speed = ½ × Gulf Stream value.

 Why these differences? Investigated with a numerical model.

ECS-Kuroshio velocity cross-sections (0.2 m/s contours)

James et al. (JPO, 1998)

ASUKA line IES array (1993-95)

ASUKA line comparisons

- TOPEX/Poseidon
- CTD/XBT
- ∽ IES

Developing the Gravest Empirical Mode (GEM)

₽ Z_{bottom}

X-axis = τ , Y-axis = pressure, Color = T (temperature)

ASUKA Temperature **GEM**

ASUKA Specific-volume-anomaly GEM

ASUKA line mean velocity cross-section (m/s)

Book et al. (JGR, 2002)

Comparison of directly-measured and IES/GEM-determined quantities at ~650 m depth: Current Velocity (top), Temperature (bottom)

Book et al. (JGR, 2002)

Kuroshio at the ASUKA line

JES PIES array (1999-2001)

Principal results of JES study:

Obtained 4 - d fields of T(x, y, z, t) and $\vec{U}(x, y, z, t)$ allowing us to study mean and variability of

- deep (sub-thermocline) circulation
- upper-layer circulation, including
 - East Korean Warm Current
 - Ulleung Warm Eddy
 - Offshore Branch (near Japan shelf-break)
 - Dok Cold Eddy

E.g., movie of T(x, y, t) at z = 100 m depth

Ulleung Basin Temperature at 100 dbar

- Such a 4-d data set (lasting 2 years) of temperature and current fields permits the study of *many* processes.
- For example, PIES sampling was at $\Delta t = 1$ hour, allowing study of higher-frequency JES phenomena:
 - distribution of near-inertial internal-wave energy
 - ° propagation of internal and surface tides
 - ° resonance oscillations of the JES.
- Another example of PIES high-frequency sampling: a study of internal solitons in the SCS ($\Delta t = 1$ hour)...

SCS PIES array 2005, 2007

Farmer et al. (Atmosphere-Ocean, in review)

CPIES – <u>C</u>urrent and <u>Pressure recording</u> <u>Inverted Echo Sounder</u>

> (has acoustic telemetering capability)

ECS2 CPIES+PIES array 2002-04

ECS mean along-slope current velocity

Andres et al. (JGR, 2008)

Velocity sections on four days in 2004.

Day of maximum transport (29.5 Sv)

Day of minimum transport (4 Sv)

RC PIES array (JAMSTEC, 2000-01)

12-year transports of ECS-Kuroshio (red & blue) and Ryukyu Current (gray)

Transport lag of Kuroshio behind Ryukyu Current

Transport correlations with PDOI

- Correlations highest at ZERO lag.
- But Kuroshio Extension transport correlation with PDOI highest at 4-5 years lag (e.g., Qiu, JPO 2003).

The Future

Immediate: Flow through the Kerama Gap

Longer-term: Cabled CPIES arrays?

Kerama Gap CPIES array 2009-11

The Future? Cabled CPIES arrays

Thank you for your attention!

Questions?