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1. Dynamics of the Loop Current Experiment 

Goals:  Increase dynamical understanding of the 
Loop Current, eddy-shedding mechanisms, and 
genesis of lower-layer flows. 

Elements:  Moored arrays of current and 
temperature and bottom-mounted pressure equipped 
inverted echo sounders (PIES) together with remote-
sensing and numerical-modeling approaches. 

Field Program: April 2009 -- November 2011 
30 months 

Three Loop Current Eddies formed during the 
experiment:   Ekman, Franklin, and Hadal. 

2.  PIES  Methodology 

The array was placed where historical 
analysis indicated eddy separation was most 
likely to occur and designed to encompass 
the Loop Current from east to west. 

PIES τ are converted to profiles of temperature and 
specific volume anomaly through a gravest 
empirical mode, GEM,  look-up table using 
historical hydrography. 

Deep pressure and currents combined with estimated 
horizontal density gradients yield referenced 
geostrophic velocities.    

Sea Surface Height:  SSH = SSHbcb+SSHref  

SSHref:  bottom pressure converted to height 
equivalent (pressure divided by gravity and density) 

SSHbcb: surface geopotentials referenced to 3000 
dbar converted to height equivalent (geopotential 
divided by gravity).  

3. Upper and Deep Statistics 

In the lower layer, mean circulation shows a 
west-east pattern of anticyclone-cyclone pair. 

Deep mean currents and their principal axes of 
the standard deviation ellipses are not aligned 
with those of the upper layer. 

Deep eddy kinetic energy is high along the 
northeastern periphery of the mean Loop 
Current position. 

During Loop Current Eddy detachment and 
formation events, a marked increase in lower-
layer eddy kinetic energy occurs. 

4. Evidence for Baroclinic Instability 

Upper and deep are coherent over large portions of the 
array only for frequencies between 1/64 d-1 and 1/32 d-1 

A tongue of high coherence extends from the northeast 
trending south-southeast. 

Where statistically coherent, the phase offset is such that 
deep leads upper-- consistent with baroclinic instability.    

In peak conversion regions there is a near balance between 
horizontal down-gradient eddy heat flux (BC) and vertical down-
gradient eddy heat fluxes (PKC). 

Baroclinic energy conversion term (BC) is largest along the 
eastern side of the Loop Current. 

Eddies extract available potential energy from the mean baroclinic 
field and further convert that eddy potential energy to eddy kinetic 
energy. 

The magnitude of eddy advection of eddy potential energy EAP is 
of the same order as the BC and PKC term,  mean advection of 
eddy potential energy MAP is small. 

The spatial pattern and magnitude of the combined PKC+EAP
+MAP terms is very similar to the BC term. 

At any particular location,  the time series that contribute to the 
terms in the eddy energy budget are event-line, often only a few 
events dominate the mean.  

5. Upper-Deep Case Studies 7. Discussion and Conclusions 

Early May:  A large-scale Loop Current meander develops.  
  
May 13:  Deep anticyclone A resides downstream of the 
upper crest. Deep cyclone B resides upstream of that crest. 

June 6 to June 30:  Deep cyclone B intensifies as it leads a 
developing upper trough.   

June 6: Deep anticyclone C arrives with an upper crest close 
behind. B and C eddies and their trailing upper meander 
trough and crest propagate downstream around the Loop.   

July 6:  The trough and deep eddy B jointly intensify and the 
Loop Current neck pinches off into a momentary 
detachment.   
  
The recurrent structure observed in these sequences is that 
as deep eddies propagate through the array they lead their 
upper counterpart.  

• In all three Loop Current Eddy formations, along the eastern side of 
an extended Loop Current,  large amplitude meanders (~300 km 
wavelength, 40-60 day period) develop and propagate southward 
toward Florida Straits. 

• A simultaneous increase in deep eddy kinetic energy occurs.  Deep 
eddies develop with signature vertical phase tilts between upper and 
deep characteristic of baroclinic instability. 

• Joint intensification is intermittent, lasting only tens of days while 
the vertical phase tilt is optimal for baroclinic growth. 

• Strongest upper-deep interaction and the most energetic deep eddies 
can occur well in advance of the final eddy separation. Each 
separation is preceded by a train of upper-deep eddy interactions. 

• Due to the limited spatial domain of the array, we cannot 
unambiguously distinguish between locally generated deep eddies 
and external deep eddies that may enter and intensify when they 
encounter favorable phasing with the upper thermocline waters. 

• Possible sources for the external deep eddies may be deep cyclones 
generated by the flow of the Loop Current over the Mississippi Fan 
as suggested by Le Hénaff et al. 2012. 

• Interpretation of remotely sensed SST and SSH data note a merging 
and stalling of Loop Current Frontal Eddies that produce a large 
`supercyclone’  (e.g. Walker et al. 2011).  This work suggests that the 
large northern cyclone development is due to the generation of a 
large meander trough through the baroclinic instability process. 

April 10: deep anticyclone A sits just downstream of an 
upper and during the subsequent 15 days the upper and deep 
highs jointly intensify. 
  
May 4: deep cyclone B leads an upper trough and both 
intensify during the subsequent 20 days.   
  
May 22: deep anticyclone C leads an upper crest 
downstream, intensifying during the next 20-30 days   
  
June 12:  Deep cyclone D follows this train of upper-deep 
coupling interactions.  
  
June 21 to July 21: Deep cyclone D leads and jointly 
develops with an upper low and trough, constricting the 
Loop Current neck greatly, Eddy Hadal separates.   
  

See related posters: 

2896 Hamilton, P., Ekman, Franklin and Hadal:  Loop Current Eddy 
separation and statistics from observations.  

2902 Rosburg, K., Comparison of the 1/25° assimilated Gulf of 
Mexico HYCOM with observation in the Loop Current Eddy 
formation region.  
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Several views of current and temperature structure in the 
region for May 5, 2009.	
  

Excellent agreement between mooring measurements and PIES-derived temperature and velocity.  

6. Mean Eddy Potential Energy Budget	
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